David Galvin has authored 9 sequences.
A364580
Number of n-step self-avoiding walks on the square Manhattan lattice that do not take two consecutive turns.
Original entry on oeis.org
1, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 460, 740, 1192, 1918, 3064, 4910, 7872, 12620, 20114, 32150, 51396, 82160, 130730, 208506, 332616, 530588, 843222, 1342662, 2138280, 3405346, 5406522, 8597632, 13674278, 21748530, 34501460, 54807754, 87077354
Offset: 0
With the x-axis and the y-axis both oriented positively, here are the 6 walks of length 3:
* (0,0)-(1,0)-(2,0)-(3,0)
* (0,0)-(1,0)-(2,0)-(2,1)
* (0,0)-(1,0)-(1,-1)-(1,-2)
* (0,0)-(0,1)-(0,2)-(0,3)
* (0,0)-(0,1)-(0,2)-(1,2)
* (0,0)-(0,1)-(-1,1)-(-2,1)
The following is not a valid walk, because it takes two consecutive turns:
* (0,0)-(1,0)-(1,-1)-(0,-1)
- A. Blanca, Y. Chen, D. Galvin, D. Randall and P. Tetali, Phase Coexistence for the Hard-Core Model on Z^2, Combinatorics, Probability and Computing, 28 (2019), 1-22.
A117633 gives the number of self-avoiding walks on the square Manhattan lattice without the restriction on consecutive turns.
A350746
Triangle read by rows: T(n,k) is the number of labeled quasi-loop-threshold graphs on vertex set [n] with k components, for n >= 1 and 1 <= k <= n.
Original entry on oeis.org
2, 3, 4, 16, 18, 8, 133, 155, 72, 16, 1521, 1810, 910, 240, 32, 22184, 26797, 14145, 4180, 720, 64, 393681, 480879, 262514, 83230, 16520, 2016, 128, 8233803, 10144283, 5675866, 1888873, 409360, 58912, 5376, 256
Offset: 1
Triangle begins:
2;
3, 4;
16, 18, 8;
133, 155, 72, 16;
1521, 1810, 910, 240, 32;
22184, 26797, 14145, 4180, 720, 64;
393681, 480879, 262514, 83230, 16520, 2016, 128;
8233803, 10144283, 5675866, 1888873, 409360, 58912, 5376, 256;
...
Except at n=1, the first column is
A048802 (
A048802 takes value 1 at n=1).
-
qltconn[0] = 0; qltconn[1] = 2; qltconn[n_] := qltconn[n] = Sum[StirlingS2[n, k]*(k^(k - 1)), {k, 1, n}] (*qltconn is the number of connected quasi loop threshold graphs on n vertices*); T[n_, l_] := T[n, l] := (Factorial[n]/Factorial[l])*Coefficient[(Sum[(qltconn[k]*(x^k))/Factorial[k], {k, 1, n}])^l, x, n]; Table[T[n, l], {n, 1, 12}, {l, 1, n}]
A350531
Triangle read by rows: T(n,k) is the number of labeled loop-threshold graphs on vertex set [n] with k components, for n >= 1 and 1 <= k <= n.
Original entry on oeis.org
2, 3, 3, 13, 9, 4, 75, 52, 18, 5, 541, 375, 130, 30, 6, 4683, 3246, 1125, 260, 45, 7, 47293, 32781, 11361, 2625, 455, 63, 8, 545835, 378344, 131124, 30296, 5250, 728, 84, 9, 7087261, 4912515, 1702548, 393372, 68166, 9450, 1092, 108, 10
Offset: 1
Triangle begins:
2;
3, 3;
13, 9, 4;
75, 52, 18, 5;
541, 375, 130, 30, 6;
4683, 3246, 1125, 260, 45, 7;
47293, 32781, 11361, 2625, 455, 63, 8;
545835, 378344, 131124, 30296, 5250, 728, 84, 9;
7087261, 4912515, 1702548, 393372, 68166, 9450, 1092, 108, 10;
...
Except at n = 1, first column is
A000670.
Essentially the same as
A154921 --- in
A350531 (this triangle), replace the last nonzero entry in row m (this entry is m+1) with the two entries m, 1 to get
A154921.
-
eulerian[n_, m_] := eulerian[n, m] =
Sum[((-1)^k)*Binomial[n+1, k]*((m+1-k)^n), {k, 0, m+1}] (* eulerian[n, m] is an Eulerian number, counting the permutations of [n] with m descents *); T[1, 1] = 2; T[n_, 1] := T[n, 1] = Sum[eulerian[n, k]*(2^k), {k, 0, n - 1}]; T[n_, n_] := T[n, n] = n + 1; T[n_, k_] := T[n, k] = Binomial[n, k - 1]*T[n - k + 1, 1]; Table[T[n, k], {n, 1, 12}, {k, 1, n}]
A350745
Triangle read by rows: T(n,k) is the number of labeled loop-threshold graphs on vertex set [n] with k loops, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 84, 32, 1, 1, 80, 460, 460, 80, 1, 1, 192, 2190, 4600, 2190, 192, 1, 1, 448, 9534, 37310, 37310, 9534, 448, 1, 1, 1024, 39032, 264208, 483140, 264208, 39032, 1024, 1, 1, 2304, 152856, 1702344, 5229756, 5229756, 1702344, 152856, 2304, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 12, 12, 1;
1, 32, 84, 32, 1;
1, 80, 460, 460, 80, 1;
1, 192, 2190, 4600, 2190, 192, 1;
1, 448, 9534, 37310, 37310, 9534, 448, 1;
1, 1024, 39032, 264208, 483140, 264208, 39032, 1024, 1;
1, 2304, 152856, 1702344, 5229756, 5229756, 1702344, 152856, 2304, 1;
...
-
T[n_, 0] := T[n, 0] = 1; T[n_, k_] := T[n, k] = Binomial[n, k]*Sum[Factorial[l]*StirlingS2[k, l]*(Factorial[l - 1]*StirlingS2[n - k, l - 1] + 2*Factorial[l]*StirlingS2[n - k, l] + Factorial[l + 1]*StirlingS2[n - k, l + 1]), {l, 1, n + 1}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]
-
T(n,k) = if(k==0, 1, binomial(n,k) * sum(j=1, n, j!*stirling(k,j,2) * ((j-1)! * stirling(n-k,j-1,2) + 2*j!*stirling(n-k,j,2) + (j+1)!*stirling(n-k,j+1,2)))) \\ Andrew Howroyd, May 06 2023
A350060
Triangle read by rows: T(n,k) is the number of labeled threshold graphs on vertex set [n] in which k dominating vertices are added in standard iterative construction, n >= 1 and 0 <= k <= n-1.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 22, 22, 1, 1, 65, 200, 65, 1, 1, 171, 1265, 1265, 171, 1, 1, 420, 6566, 15050, 6566, 420, 1, 1, 988, 30156, 136346, 136346, 30156, 988, 1, 1, 2259, 127632, 1039878, 2009952, 1039878, 127632, 2259, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 22, 22, 1;
1, 65, 200, 65, 1;
1, 171, 1265, 1265, 171, 1;
1, 420, 6566, 15050, 6566, 420, 1;
1, 988, 30156, 136346, 136346, 30156, 988, 1;
1, 2259, 127632, 1039878, 2009952, 1039878, 127632, 2259, 1;
...
-
eulerian[n_,m_] := eulerian[n,m] =
Sum[((-1)^k)*Binomial[n+1,k]*((m+1-k)^n), {k,0,m+1}] (* eulerian[n, m] is an Eulerian number, counting the permutations of [n] with m descents *);
op2[n_,k_] := op2[n,k] =
Sum[(n-j)*eulerian[n-1,j-1]*Binomial[j-1,n-k-1], {j,1,n-1}] (* op2[n,k] counts ordered partitions of [n] with k parts, with first part having size at least 2 *);
T[n_, 0] := T[n, 0] = 1; T[2, 1] = 1; T[2, k_] := T[2, k] = 0;
T[n_, k_] :=
T[n, k] =
Sum[Binomial[n, k + 1]*
op2[k + 1,
l]*(Factorial[l - 1]*StirlingS2[n - k - 1, l - 1] +
Factorial[l]*StirlingS2[n - k - 1, l]) +
Binomial[n, k]*Factorial[l]*
StirlingS2[k, l]*(op2[n - k, l + 1] + op2[n - k, l]), {l, 1,
n}] (* T[n, k] is number of threshold graphs on n vertices with k dominating vertices added in construction*);
Table[T[n, k],{n,1,12},{k,0,n-1}]
A350528
Triangle read by rows: T(n,k) is the number of labeled quasi-threshold graphs on vertex set [n] with k components, for n >= 1 and 1 <= k <= n.
Original entry on oeis.org
1, 1, 1, 4, 3, 1, 23, 19, 6, 1, 181, 155, 55, 10, 1, 1812, 1591, 600, 125, 15, 1, 22037, 19705, 7756, 1750, 245, 21, 1, 315569, 286091, 116214, 27741, 4270, 434, 28, 1, 5201602, 4766823, 1983745, 493794, 81291, 9198, 714, 36, 1
Offset: 1
Triangle begins:
1;
1, 1;
4, 3, 1;
23, 19, 6, 1;
181, 155, 55, 10, 1;
1812, 1591, 600, 125, 15, 1;
22037, 19705, 7756, 1750, 245, 21, 1;
315569, 286091; 116214, 27741, 4270, 434, 28, 1;
...
-
T[n_, k_] := T[n, k] = Sum[((-1)^(n - j))*StirlingS2[n, j]*k*Binomial[j, k]*(j^(j - k - 1)), {j, 1, n}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}]
A348436
Triangle read by rows. T(n,k) is the number of labeled threshold graphs on n vertices with k components, for 1 <= k <= n.
Original entry on oeis.org
1, 1, 1, 4, 3, 1, 23, 16, 6, 1, 166, 115, 40, 10, 1, 1437, 996, 345, 80, 15, 1, 14512, 10059, 3486, 805, 140, 21, 1, 167491, 116096, 40236, 9296, 1610, 224, 28, 1, 2174746, 1507419, 522432, 120708, 20916, 2898, 336, 36, 1, 31374953, 21747460, 7537095, 1741440, 301770, 41832, 4830, 480, 45, 1
Offset: 1
Triangle begins:
1;
1, 1;
4, 3, 1;
23, 16, 6, 1;
166, 115, 40, 10, 1;
1437, 996, 345, 80, 15, 1;
14512, 10059, 3486, 805, 140, 21, 1;
167491, 116096, 40236, 9296, 1610, 224, 28, 1;
2174746, 1507419, 522432, 120708, 20916, 2898, 336, 36, 1;
31374953, 21747460, 7537095, 1741440, 301770, 41832, 4830, 480, 45, 1;
...
-
T := (n, k) -> `if`(n = k, 1, binomial(n, k-1)*A053525(n-k+1)):
for n from 1 to 10 do seq(T(n, k), k=1..n) od; # Peter Luschny, Oct 24 2021
-
eulerian[0, 0] := 1; eulerian[n_, m_] := eulerian[n, m] =
Sum[((-1)^k)*Binomial[n + 1, k]*((m + 1 - k)^n), {k, 0, m + 1}];
(* t[n] counts the labeled threshold graphs on n vertices *)
t[0] = 1; t[1] = 1;
t[n_] := t[n] = Sum[(n - k)*eulerian[n - 1, k - 1]*(2^k), {k, 1, n - 1}];
T[1, 1] := 1; T[n_, 1] := T[n, 1] = (1/2)*t[n]; T[n_, n_] := T[n, n] = 1;
T[n_, k_] := T[n, k] = Binomial[n, k - 1]*T[n - k + 1, 1];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten
A348576
Triangle read by rows: T(n,k) is the number of ordered partitions of [n] into k nonempty subsets, in which the first subset has size at least 2, n >= 1 and 1 <= k <= n.
Original entry on oeis.org
0, 1, 0, 1, 3, 0, 1, 10, 12, 0, 1, 25, 80, 60, 0, 1, 56, 360, 660, 360, 0, 1, 119, 1372, 4620, 5880, 2520, 0, 1, 246, 4788, 26376, 58800, 57120, 20160, 0, 1, 501, 15864, 134316, 466704, 771120, 604800, 181440, 0, 1, 1012, 50880, 637020, 3238200, 8094240, 10584000, 6955200, 1814400, 0
Offset: 1
For n=3, the ordered partitions of {1,2,3} in which the first block has size at least 2 are 123, 12/3, 13/2 and 23/1, so T(3,1)=1, T(3,2)=3 and T(3,3)=0.
Triangle begins:
0;
1, 0;
1, 3, 0;
1, 10, 12, 0;
1, 25, 80, 60, 0;
1, 56, 360, 660, 360, 0;
1, 119, 1372. 4620, 5880, 2520, 0;
1, 246, 4788, 26376, 58800, 57120, 20160, 0;
1, 501, 15864, 134316, 466704, 771120, 604800, 181440, 0;
1, 1012, 50880, 637020, 3238200, 8094240, 10584000, 6955200, 1814400, 0;
...
-
b:= proc(n, t) option remember; expand(`if`(n=0, 1,
add(x*b(n-j, 1)*binomial(n, j), j=t..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 2)):
seq(T(n), n=1..10); # Alois P. Heinz, Oct 24 2021
-
eulerian[n_,m_] := eulerian[n,m] =
Sum[((-1)^k)*Binomial[n+1,k]*((m+1-k)^n), {k,0,m+1}] (* eulerian[n, m] is an Eulerian number, counting the permutations of [n] with m descents *);
op2[n_,k_] := op2[n,k] =
Sum[(n-j)*eulerian[n-1,j-1]*Binomial[j-1,n-k-1], {j,1,n-1}] (* op2[n,k] counts ordered partitions on [n] with k parts, with first part having size at least 2 *); Table[op2[n, k],{n,1,12},{k,1,n}]
-
TE(n, k) = sum(j=0, k, (-1)^j * (k-j)^n * binomial( n+1, j)); \\ A008292
T(n,k) = sum(j=1, n-1, (n-j)*TE(n-1,j)*binomial(j-1,n-k-1)); \\ Michel Marcus, Oct 24 2021
A345882
Number of numbers expressible as b(1)*b(2)*...*b(n) with 1 <= b(i) <= i for each i.
Original entry on oeis.org
1, 2, 5, 11, 30, 64, 178, 382, 758, 1367, 3620, 7193, 19707, 40867, 75706, 130017, 339506, 667390, 1824656, 3724917, 6785689, 11545898, 30099090, 58833294, 105348580, 176098677, 282847446, 438090287, 1095200628, 2057512312, 5494259815, 10925293558, 19311381148
Offset: 1
For n=3, b(1) must equal 1, b(2) can be 1 or 2, and b(3) can be 1, 2 or 3. This gives 3!=6 possible products: 1*1*1=1, 1*2*1=2, 1*1*2=2, 1*1*3=3, 1*2*2=4 and 1*2*3=6. Since 1*2*1=1*1*2, this process yields 5 distinct numbers, so a(3)=5.
-
list[1] := {1};
list[n_] := list[n] = DeleteDuplicates[Flatten[Table[i*list[n - 1], {i, 1, n}]]];
a[n_] := a[n] = Length[list[n]]; Table[a[n], {n, 1, 10}]
-
a(n) = my(l = List()); forvec(x = vector(n, i, [1, i]), listput(l, prod(i = 1, n, x[i])), 1); listsort(l, 1); #l \\ David A. Corneth, Sep 18 2021
-
def A345882set(n):
if n == 1:
return {1}
else:
s = A345882set(n-1)
c = set(s)
for x in s:
for i in range(2,n+1):
c.add(i*x)
return c
def A345882(n): return len(A345882set(n)) # Chai Wah Wu, Sep 19 2021
Comments