cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Ryan Stees

Ryan Stees's wiki page.

Ryan Stees has authored 1 sequences.

A251610 Determinants of the spiral knots S(4,k,(1,1,1)).

Original entry on oeis.org

1, 4, 3, 0, 5, 12, 7, 0, 9, 20, 11, 0, 13, 28, 15, 0, 17, 36, 19, 0, 21, 44, 23, 0, 25, 52, 27, 0, 29, 60, 31, 0, 33, 68, 35, 0, 37, 76, 39, 0, 41, 84, 43, 0, 45, 92, 47, 0, 49, 100, 51, 0, 53, 108, 55, 0, 57, 116, 59, 0, 61, 124, 63, 0, 65, 132, 67, 0, 69, 140, 71, 0, 73, 148, 75, 0, 77, 156, 79
Offset: 1

Author

Ryan Stees, Dec 05 2014

Keywords

Comments

a(k) = det(S(4,k,(1,1,1))). These knots are also the torus knots T(4,k).

Examples

			For k=3, b(3)=sqrt(2)b(2)-b(1)=2-1=1, so det(S(4,3,(1,1,1)))=3*1^2=3.
		

Crossrefs

Product of terms of A000027 and A007877.

Programs

  • PARI
    B=vector(166); B[1]=1; B[2]=s;  \\ s := sqrt(2)
    for(n=3,#B,B[n]=s*B[n-1]-B[n-2]);
    B=substpol(B,s^2,2);
    A=vector(#B,n,n*B[n]^2);
    A=substpol(A,s^2,2)
    \\ Joerg Arndt, Dec 06 2014
    
  • PARI
    Vec(x*(x^4+2*x^3-2*x^2+2*x+1) / ((x-1)^2*(x^2+1)^2) + O(x^100)) \\ Colin Barker, Dec 07 2014

Formula

a(k) = det(S(4,k,(1,1,1))) = k*(b(k))^2, where b(1)=1, b(2)=sqrt(2), b(k)=sqrt(2)*b(k-1) - b(k-2) = b(2)*b(k-1) - b(k-2).
From Colin Barker, Dec 06 2014: (Start)
b(k) = ((2-(-i)^k-i^k)*k)/2 where i=sqrt(-1).
b(k) = 2*b(k-1)-3*b(k-2)+4*b(k-3)-3*b(k-4)+2*b(k-5)-b(k-6).
G.f.: x*(x^4+2*x^3-2*x^2+2*x+1) / ((x-1)^2*(x^2+1)^2).
(End)

Extensions

More terms from Joerg Arndt, Dec 06 2014