A362353 Triangle read by rows: T(n,k) = (-1)^(n-k)*binomial(n, k)*(k+3)^n, for n >= 0, and k = 0,1, ..., n. Coefficients of certain Sidi polynomials.
1, -3, 4, 9, -32, 25, -27, 192, -375, 216, 81, -1024, 3750, -5184, 2401, -243, 5120, -31250, 77760, -84035, 32768, 729, -24576, 234375, -933120, 1764735, -1572864, 531441, -2187, 114688, -1640625, 9797760, -28824005, 44040192, -33480783, 10000000, 6561, -524288, 10937500, -94058496, 403536070, -939524096, 1205308188, -800000000, 214358881
Offset: 0
Examples
The triangle T begins: n\k 0 1 2 3 4 5 6 7 0: 1 1: -3 4 2: 9 -32 25 3: -27 192 -375 216 4: 81 -1024 3750 -5184 2401 5: -243 5120 -31250 77760 -84035 32768 6: 729 -24576 234375 -933120 1764735 -1572864 531441 7: -2187 114688 -1640625 9797760 -28824005 44040192 -33480783 10000000 ... n = 8: 6561 -524288 10937500 -94058496 403536070 -939524096 1205308188 -800000000 2143588, n = 9: -19683 2359296 -70312500 846526464 -5084554482 16911433728 -32543321076 36000000000 -21221529219 5159780352.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..5049 (rows 0..100 of the triangle, flattened)
- Wolfdieter Lang, On a Certain Family of Sidi Polynomials, May 2023.
- Avram Sidi, Numerical Quadrature and Nonlinear Sequence Transformations; Unified Rules for Efficient Computation of Integrals with Algebraic and Logarithmic Endpoint Singularities, Math. Comp., 35 (1980), 851-874.
Crossrefs
Programs
-
Mathematica
A362353row[n_]:=Table[(-1)^(n-k)Binomial[n,k](k+3)^n,{k,0,n}];Array[A362353row,10,0] (* Paolo Xausa, Jul 30 2023 *)
Formula
T(n, k) = (-1)^(n-k)*binomial(n, k)*(k + 3)^n, for n >= 0, k = 0, 1, ..., n.
O.g.f. of column k: (x*(k + 3))^k/(1 - (k + 3)*x)^(k+1), for k >= 0.
E.g.f. of column k: exp(-(k + 3)*x)*((k + 3)*x)^k/k!, for k >= 0.
E.g.f. of the triangle, that is, the e.g.f. of its row polynomials {PS(2;n,y)}_{n>=0}): ES(2;y,x) = exp(-3*x)*(1/3)*(d/dz)(W(-z)/(-z))^2, after replacing z by x*y*exp(-x), where W is the Lambert W-function for the principal branch. This becomes ES(2;y,x) = exp(-3*x)*exp(3*(-W(-z)))/(1 - (-W(-z)), with z = x*y*exp(-x).
Extensions
a(41)-a(44) from Paolo Xausa, Jul 31 2023
Comments