cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A271385 a(n) = Product_{k=0..floor((n - 1)/2)} (n - 2*k)^(n - 2*k).

Original entry on oeis.org

1, 1, 4, 27, 1024, 84375, 47775744, 69486440625, 801543976648704, 26920470805806965625, 8015439766487040000000000, 7680724499239438722449399746875, 71466466094944065310414602240000000000, 2326300251412874049290421829657963142035959375
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2016

Keywords

Comments

Double hyperfactorial (by analogy with the double factorial).

Examples

			a(0) = 1;
a(1) = 1^1 = 1;
a(2) = 2^2 = 4;
a(3) = 1^1*3^3 = 27;
a(4) = 2^2*4^4 = 1024;
a(5) = 1^1*3^3*5^5 = 84375;
a(6) = 2^2*4^4*6^6 = 47775744;
a(7) = 1^1*3^3*5^5*7^7 = 69486440625;
a(8) = 2^2*4^4*6^6*8^8 = 801543976648704, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[Product[(n - 2 k)^(n - 2 k), {k, 0, Floor[(n - 1)/2]}], {n, 0, 13}]
    RecurrenceTable[{a[0] == 1, a[1] == 1, a[n] == n^n a[n - 2]}, a, {n, 13}]
  • PARI
    a(n) = prod(k=0, (n-1)\2, (n-2*k)^(n-2*k)); \\ Michel Marcus, Apr 07 2016

Formula

a(n) = n^n*(n - 2)^(n - 2)*...*5^5*3^3*1^1, for n>0 odd; a(n) = n^n*(n - 2)^(n - 2)*...*6^6*4^4*2^2, for n>0 even; a(n) = 1, for n = 0.
a(n) = n^n*a(n-2), a(0)=1, a(1)=1.
a(n) = (1/a(n-1))*sqrt(a(2n)/2^(n*(n+1))).
a(n)*a(n-1) = A002109(n).
a(n)*a(n-1)*sqrt(a(2n))/((n!)^n*sqrt(2^(n*(n+1)))) = A168510(n).

A191510 Product of terms in n-th row of A132818.

Original entry on oeis.org

1, 9, 648, 360000, 1518750000, 48243443062500, 11480517255997440000, 20400479323264014247526400, 270090559531318533654528000000000, 26599911685677709861296622500000000000000, 19464564507161243794359748945629699456000000000000
Offset: 1

Views

Author

Harlan J. Brothers, Jun 04 2011

Keywords

Comments

Lim_{n -> inf} (a(n)*a(n+2))/a(n+1)^2 = e^2. Like A168510, this limit is asymptotic from above.

Examples

			For n=3, row 3 of A132818 = {6,18,6} and a(3)=648.
		

Crossrefs

Cf. A132818, A002457. Related to e as in the cases of A168510 and A001142.

Programs

  • Mathematica
    Table[Product[Product[((k + 1)/(k - 1))^k, {k, 2, j}], {j, 1, n}], {n, 1, 11}]
    Table[(n + 1)^n * Hyperfactorial[n]^2 / (2^n * BarnesG[n+2]^2), {n, 1, 12}] (* Vaclav Kotesovec, Jul 11 2015 *)

Formula

a(n)=product[product[((k + 1)/(k - 1))^k, {k, 2, j}], {j, 1, n}].
a(n) ~ A^4 * exp(n^2 + 2*n + 5/6) / (n^(2/3) * 2^(2*n+1) * Pi^(n+1)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 11 2015
Showing 1-2 of 2 results.