cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A178819 Pascal's prism (3-dimensional array) read by folded antidiagonal cross-sections: (h+i; h, i-j, j), h >= 0, i >= 0, 0 <= j <= i.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 3, 3, 1, 3, 6, 3, 3, 3, 1, 1, 4, 4, 6, 12, 6, 4, 12, 12, 4, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 5, 20, 30, 20, 5, 10, 30, 30, 10, 10, 20, 10, 5, 5, 1, 1, 6, 6, 15, 30, 15, 20, 60, 60, 20, 15, 60, 90, 60, 15, 6, 30, 60, 60, 30, 6, 1, 6, 15, 20, 15, 6, 1
Offset: 0

Views

Author

Harlan J. Brothers, Jun 16 2010

Keywords

Comments

P_h = level h of Pascal's prism where P_1 = Pascal's triangle (A007318) and P_2 = denominators of Leibniz harmonic triangle (A003506). A sequence of length k through P is defined by P for n = {1, 2, 3, ..., k}.

Examples

			Prism begins (levels 1-4):
1
1 1
1 2 1
1 3 3 1
1
2 2
3 6 3
4 12 12 4
1
3 3
6 12 6
10 30 30 10
1
4 4
10 20 10
20 60 60 20
		

Crossrefs

Level 1 = A007318.
Level 2 = A003506.
Level 3 = A094305.
Level 4 = A178820.
Level 5 = A178821.
Level 6 = A178822.
Sums of shallow diagonals for each level correspond to rows of square A037027.
Contains A109649 and A046816.
P = A000984.
P = A006480.
P = A000897.
P<3n-2, 3n-2, n> = A113424.

Programs

  • Mathematica
    end = 5; Column/@Table[Multinomial[h, i-j, j], {h, 0, end}, {i, 0, end}, {j, 0, i}]

Formula

a_(h, i, j) = (h+i-2; h-1, i-j, j-1), h >= 1, i >= 1, 1 <= j <= i.
Recurrence:
For P_h, element a is given by: a_(1, 1) = 1; a_(i, j) = ((i+h-2)/(i-1)) (a_(i-1, j) + a_(i-1, j-1)).

Extensions

Keyword tabf by Michel Marcus, Oct 22 2017

A178821 Triangle read by rows: T(n,k) = binomial(n+4,4) * binomial(n,k), 0 <= k <= n.

Original entry on oeis.org

1, 5, 5, 15, 30, 15, 35, 105, 105, 35, 70, 280, 420, 280, 70, 126, 630, 1260, 1260, 630, 126, 210, 1260, 3150, 4200, 3150, 1260, 210, 330, 2310, 6930, 11550, 11550, 6930, 2310, 330, 495, 3960, 13860, 27720, 34650, 27720, 13860, 3960, 495, 715, 6435, 25740, 60060, 90090, 90090, 60060, 25740, 6435, 715
Offset: 0

Views

Author

Harlan J. Brothers, Jun 19 2010

Keywords

Comments

The product of the pentatope numbers (A000332, beginning with fifth term) and Pascal's triangle (A007318). Also level 5 of Pascal's prism (A178819) read by rows: (i+4; 4, i-j, j), i >= 0, 0 <= j <= i.

Examples

			Triangle begins:
   1;
   5,   5;
  15,  30,  15;
  35, 105, 105,  35;
  70, 280, 420, 280,  70;
		

Crossrefs

Rows sum to A003472, shallow diagonals sum to A001873.

Programs

  • GAP
    T:=Flat(List([0..10], n-> List([0..n], k-> Binomial(n+4, 4)* Binomial(n, k) ))); # G. C. Greubel, Jan 22 2019
  • Magma
    /* As triangle */ [[Binomial(n+4,4)*Binomial(n,k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Oct 23 2017
    
  • Maple
    T:=(n,k)->binomial(n+4,4)*binomial(n,k): seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Jan 22 2019
  • Mathematica
    Table[Multinomial[4, i-j, j], {i, 0, 9}, {j, 0, i}]//Column
  • PARI
    {T(n,k) = binomial(n+4, 4)*binomial(n, k)}; \\ G. C. Greubel, Jan 22 2019
    
  • Sage
    [[binomial(n+4, 4)*binomial(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jan 22 2019
    

Formula

T(n,k) = C(n+4,4) * C(n,k), 0 <= k <= n.
For element a in A178819: a_(5, i, j) = (i+3; 4, i-j, j-1), i >= 1, 1 <= j <= i.
G.f.: 1/(1 - x - x*y)^5. - Ilya Gutkovskiy, Mar 20 2020

A178822 Triangle read by rows: T(n,k) = C(n+5,5) * C(n,k), 0 <= k <= n.

Original entry on oeis.org

1, 6, 6, 21, 42, 21, 56, 168, 168, 56, 126, 504, 756, 504, 126, 252, 1260, 2520, 2520, 1260, 252, 462, 2772, 6930, 9240, 6930, 2772, 462, 792, 5544, 16632, 27720, 27720, 16632, 5544, 792, 1287, 10296, 36036, 72072, 90090, 72072, 36036, 10296, 1287
Offset: 0

Views

Author

Harlan J. Brothers, Jun 19 2010

Keywords

Comments

The product of A000389 and Pascal's triangle (A007318). Level 6 of Pascal's prism (A178819) read by rows: (i+5; 5, i-j, j), i >= 0, 0 <= j <= i.

Examples

			Triangle begins:
    1;
    6,   6;
   21,  42,  21;
   56, 168, 168,  56;
  126, 504, 756, 504, 126;
		

Crossrefs

Rows sum to A054849, shallow diagonals sum to A001874.

Programs

  • Magma
    /* As triangle */ [[Binomial(n+5,5)*Binomial(n,k): k in [0..n]]: n in [0..10]]; // Vincenzo Librandi, Oct 23 2017
    
  • Mathematica
    Table[Multinomial[5, i-j, j], {i, 0, 9}, {j, 0, i}]//Column
    Table[Binomial[n + 5, 5]*Binomial[n, k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Nov 25 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n+5,5)*binomial(n,k), ", "))) \\ G. C. Greubel, Nov 25 2017

Formula

T(n,k) = C(n+5,5) * C(n,k), 0 <= k <= n.
For element a_(h, i, j) in A178819: a_(6, i, j) = (i+4; 5, i-j, j-1), i >= 1, 1 <= j <= i.
G.f.: 1/(1 - x - x*y)^6. - Ilya Gutkovskiy, Mar 20 2020

A121547 Fourth slice along the 1-2-plane in the cube a(m,n,o) = a(m-1,n,o) + a(m,n-1,o) + a(m,n,o-1) for which the first slice is Pascal's triangle (slice read by antidiagonals).

Original entry on oeis.org

0, 0, 1, 0, 4, 4, 0, 10, 20, 10, 0, 20, 60, 60, 20, 0, 35, 140, 210, 140, 35, 0, 56, 280, 560, 560, 280, 56, 0, 84, 504, 1260, 1680, 1260, 504, 84, 0, 120, 840, 2520, 4200, 4200, 2520, 840, 120, 0, 165, 1320, 4620, 9240, 11550, 9240, 4620, 1320, 165, 0, 220, 1980, 7920, 18480, 27720, 27720, 18480, 7920, 1980, 220
Offset: 0

Views

Author

Thomas Wieder, Aug 06 2006

Keywords

Comments

Essentially the same as triangle A178820 with an additional column of zeros at the left border. - Georg Fischer, Jul 31 2023

Examples

			The second row is 1, 4, 10, 20, 35, 56, 84, 120, 165, 220 = A000292, i.e., Tetrahedral (or pyramidal) numbers: binomial(n+2,3) = n(n+1)(n+2)/6 (core).
The third row is 4, 20, 60, 140, 280, 504, 840, 1320, 1980, 2860 = A033488 = n*(n+1)*(n+2)*(n+3)/6.
The main diagonal is 0, 4, 60, 560, 4200, 27720, 168168, 960960, 5250960, 27713400 = {0} U A002803*4.
Triangle starts:
  0
  0, 1
  0, 4, 4
  0, 10, 20, 10
  0, 20, 60, 60, 20
  0, 35, 140, 210, 140, 35
  0, 56, 280, 560, 560, 280, 56
  0, 84, 504, 1260, 1680, 1260, 504, 84
		

Crossrefs

Programs

  • Maple
    T:=(n, k)->binomial(n+3, 3)*binomial(n, k): seq(print(seq(T(n-1, k-1), k=0..n)), n=0..10); # Georg Fischer, Jul 31 2023

Formula

a(m-1,n,o) + a(m,n-1,o) + a(m,n,o-1) with initialization values a(1,0,0) = 1 and a(m<>1=0, n>=0, 0>=o) = 0.

Extensions

a(55)-a(56) corrected and more terms from Georg Fischer, Jul 31 2023
Showing 1-4 of 4 results.