A251360 Numbers k such that k is the concatenation of prime factors of pi(k), in increasing order.
1117, 2163, 2537, 5137, 222926801
Offset: 1
Examples
1117 is in the sequence since pi(1117) = 11*17, 2163 is in the sequence since pi(2163) = 2*163, 2537 is in the sequence since pi(2537) = 2*5*37, and 5137 is in the sequence since pi(5137) = 5*137.
Links
- Chris Caldwell, G. L. Honaker and Lewis, 1117
Programs
-
Mathematica
a251360[n_Integer] := Select[Range[n], # == FromDigits[Flatten@IntegerDigits[First@ Transpose@ FactorInteger[PrimePi[#]]]] &]; a251360[10^5] (* Michael De Vlieger, Dec 03 2014 *)
-
Python
from sympy import prime, factorint A251360_list, p = [], 3 for n in range(2,10**6): q, fn = prime(n+1), factorint(n) m = int(''.join(str(d)*fn[d] for d in sorted(fn))) if p <= m < q: A251360_list.append(m) p = q # Chai Wah Wu, Dec 10 2014, corrected Apr 04 2018
Extensions
a(5) from Chai Wah Wu, Dec 10 2014
Comments