A262061 Least prime(i) such that prime(i)^(1+1/i) - prime(i) > n.
2, 3, 5, 7, 11, 11, 17, 17, 23, 29, 29, 37, 41, 53, 59, 67, 79, 89, 97, 127, 127, 137, 163, 179, 211, 223, 251, 293, 307, 337, 373, 419, 479, 521, 541, 587, 691, 727, 797, 853, 929, 1009, 1151, 1201, 1277, 1399, 1523, 1693, 1777, 1931, 2053, 2203, 2333, 2521, 2647, 2953, 3119, 3299, 3527, 3847, 4127
Offset: 1
Keywords
Examples
a(20) = 127 since for all primes less than the 31st prime, 127, p_k^(32/31) - p_k are less than 20. a(100) = 38113, a(200) = 2400407, a(300) = 57189007, a(400) = 828882731, a(500) = 8748565643, a(1000) = 91215796479037, a(1064) = 246842748060263, limit of Mathematica by direct computation, i.e., the first Mathematica line.
References
- Paulo Ribenboim, The little book Of bigger primes, second edition, Springer, 2004, p. 185.
Links
- Farideh Firoozbakht and Robert G. Wilson v, Table of n, a(n) for n = 1..507
- Alexei Kourbatov, Upper Bounds for Prime Gaps Related to Firoozbakht's Conjecture, arXiv:1506.03042 [math.NT], 2015.
- Alexei Kourbatov, Verification of the Firoozbakht conjecture for primes up to four quintillion, arXiv:1503.01744 [math.NT], 2015
Crossrefs
Programs
-
Mathematica
f[n_] := Block[{p = 2, k = 1}, While[n > p^(1 + 1/k) - p, p = NextPrime@ p; k++]; p]; Array[f, 60] (* or quicker *) (* or quicker *) p = 2; i = 1; lst = {}; Do[ While[ p^(1 + 1/i) < n + p, p = NextPrime@ p; i++]; AppendTo[lst, p]; Print[{n, p}], {n, 100}]; lst
-
PARI
a(n) = {i = 0; forprime(p=2,, i++; if (p^(1+1/i) - p > n, return (p)););} \\ Michel Marcus, Oct 04 2015
Formula
Log(y) ~= g + x^(1/2) where g = Euler's Gamma.
Extensions
a(2) corrected in b-file by Andrew Howroyd, Feb 22 2018
Comments