cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Susanne Wienand

Susanne Wienand's wiki page.

Susanne Wienand has authored 9 sequences.

A202409 Triangle read by rows, n>=1, 1<=k<=n, T(n,k) = k*binomial(n,k)^3*(n^2+n-k*n-k+k^2)/((n-k+1)^2*n).

Original entry on oeis.org

1, 4, 4, 9, 36, 9, 16, 168, 168, 16, 25, 550, 1400, 550, 25, 36, 1440, 7500, 7500, 1440, 36, 49, 3234, 30135, 61250, 30135, 3234, 49, 64, 6496, 98784, 356720, 356720, 98784, 6496, 64, 81, 11988, 278208, 1629936, 2889432, 1629936, 278208, 11988, 81
Offset: 1

Author

Peter Luschny and Susanne Wienand, Dec 19 2011

Keywords

Comments

Let a meander be defined as in the link and m = 3. Then T(n,k) counts the invertible meanders of length m(n+1) built from arcs with central angle 360/m whose binary representation have mk '1's.

Examples

			[1]                1
[2]               4, 4
[3]             9, 36, 9
[4]         16, 168, 168, 16
[5]      25, 550, 1400, 550, 25
[6]  36, 1440, 7500, 7500, 1440, 36
T(2,1) = 4 because the invertible meanders of length 9 and central angle 120 degree which have three '1's in their binary representation are {100100100, 100011000, 110001000, 111000000}.
		

Crossrefs

Row sums: A201640. Cf. A132812.

Programs

  • Maple
    A202409 := (n,k) -> k*binomial(n,k)^3*(n^2+n-k*n-k+k^2)/((n-k+1)^2*n);
    seq(print(seq(A202409(n,k),k=1..n)),n=1..6);
  • Mathematica
    t[n_, k_] := k*Binomial[n, k]^3*(n^2 + n - k*n - k + k^2)/((n - k + 1)^2*n); Table[t[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 02 2013 *)

A198256 Row sums of A197653.

Original entry on oeis.org

1, 5, 46, 485, 5626, 69062, 882540, 11614437, 156343330, 2142556130, 29791689148, 419260001030, 5960334608788, 85469709312860, 1234797737654296, 17955907741675749, 262607675818816050, 3860239468267647914, 57002176852356800700, 845159480056345448610
Offset: 0

Author

Susanne Wienand, Oct 22 2011

Keywords

Comments

Number of meanders of length (n+1)*4 which are composed by arcs of equal length and a central angle of 90 degrees.
Definition of a meander:
A binary curve C is a triple (m, S, dir) such that
(a) S is a list with values in {L,R} which starts with an L,
(b) dir is a list of m different values, each value of S being allocated a value of dir,
(c) consecutive Ls increment the index of dir,
(d) consecutive Rs decrement the index of dir,
(e) the integer m > 0 divides the length of S and
(f) C is a meander if each value of dir occurs length(S)/m times.
For this sequence, m = 4.
The terms are proved by brute force for 0 <= n <= 8, but not yet in general. - Susanne Wienand, Oct 29 2011

Examples

			Some examples of list S and allocated values of dir if n = 4:
Length(S) = (4+1)*4 = 20.
  S: L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L
dir: 1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0
  S: L,L,L,L,R,L,R,R,L,R,R,R,L,R,L,L,R,L,L,L
dir: 1,2,3,0,0,0,0,3,3,3,2,1,1,1,1,2,2,2,3,0
  S: L,L,R,L,L,L,L,R,R,L,R,R,L,R,L,L,L,L,R,R
dir: 1,2,2,2,3,0,1,1,0,0,0,3,3,3,3,0,1,2,2,1
Each value of dir occurs 20/4 = 5 times.
		

Crossrefs

Programs

  • Mathematica
    A198256[n_] := Sum[Sum[Sum[(-1)^(j + i)* Binomial[i, j]*Binomial[n, k]^4*(n + 1)^j*(k + 1)^(3 - j)/(k + 1)^3, {i, 0, 3}], {j, 0, 3}], {k, 0, n}]; Table[A198256[n], {n, 0, 16}] (* Peter Luschny, Nov 02 2011 *)
  • PARI
    A198256(n) = {sum(k=0,n,if(n == 1+2*k,4,(1+k)*(1-((n-k)/(1+k))^4)/(1+2*k-n))*binomial(n,k)^4)} \\ Peter Luschny, Nov 24 2011
  • Sage
    from mpmath import mp, hyper
    def A198256(n) : return hyper([1-n, 1-n, 1-n, 1-n], [3, 3, 3], 1)*(n^4-n^6)/4 + hyper([-n, -n, -n, -n], [2, 2, 2], 1)*(1+n+n^2+n^3) + hyper([2, 1-n, 1-n, 1-n, 1-n], [1, 3, 3, 3], 1)*(n^4+n^5)/4
    mp.dps = 32
    for n in (0..19) : print(int(A198256(n)))  # Peter Luschny, Oct 24 2011
    

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..3} Sum_{i=0..3} (-1)^(j+i)*C(i,j)*C(n,k)^4*(n+1)^j*(k+1)^(3-j)/(k+1)^3. - Peter Luschny, Nov 02 2011
a(n) = Sum_{k=0..n} h(n,k)*binomial(n,k)^4, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^4)/(1+2*k-n) if 1+2*k-n <> 0 else h(n,k) = 4. - Peter Luschny, Nov 24 2011
From Peter Bala, Mar 21 2023: (Start)
Conjecture 1: a(n) = Sum_{k = 0..n} binomial(n+1,k)^2*binomial(n,k)^2.
If true, then we have the third-order recurrence equation
n^2*(n + 1)^3*P(n-1)*a(n) = 2*n^2*(400*n^8 - 1260*n^7 + 20*n^6 + 3020*n^5 - 1646*n^4 - 1951*n^3 + 1142*n^2 + 465*n - 290)*a(n-1) + 4*(n - 1)*(2800*n^9 - 15420*n^8 + 30620*n^7 - 23710*n^6 + 808*n^5 + 6863*n^4 - 1309*n^3 - 1218*n^2 + 496*n - 60)*a(n-2) + 8*(n - 2)^2*(2*n - 3)*(4*n - 5)*(4*n - 7)*P(n)*a(n-3) with a(0) = 1, a(1) = 5 and a(2) = 46 and where P(n) = 100*n^5 - 65*n^4 - 35*n^3 + 25*n^2 + 6*n - 5.
Conjecture 2: working with offset 1, that is, a(1) = 1, a(2) = 5, ..., then the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for positive integers n and r and all primes p >= 5. (End)
a(n) ~ 2^(4*n + 5/2) / (Pi*n)^(3/2). - Vaclav Kotesovec, Apr 17 2023
Peter Bala's conjecture 1 can equivalently written: a(n) = hypergeom([-n - 1, -n - 1, -n, -n], [1, 1, 1], 1). - Detlef Meya, May 28 2024
a(n) = Sum_{k=0..n+1} (k/(n+1))^2 * binomial(n+1,k)^4. - Seiichi Manyama, Jul 14 2024

A198258 Row sums of A197655.

Original entry on oeis.org

1, 7, 190, 5831, 219626, 8976562, 394800204, 18211045575, 873216720082, 43136486269382, 2183722698469676, 112795257850321202, 5925951358743662260, 315869014732813229716, 17048301919464100932440, 930217336628892162216135, 51244644190683748419791970
Offset: 0

Author

Susanne Wienand, Oct 24 2011

Keywords

Comments

Number of meanders of length (n+1)*6 which are composed by arcs of equal length and a central angle of 60 degrees.
Definition of a meander:
A binary curve C is a triple (m, S, dir) such that
(a) S is a list with values in {L,R} which starts with an L,
(b) dir is a list of m different values, each value of S being allocated a value of dir,
(c) consecutive Ls increment the index of dir,
(d) consecutive Rs decrement the index of dir,
(e) the integer m>0 divides the length of S and
(f) C is a meander if each value of dir occurs length(S)/m times.
For this sequence, m = 6.
The terms are proved by brute force for 0 <= n <= 5, but not yet in general. - Susanne Wienand, Oct 29 2011

Examples

			Some examples of list S and allocated values of dir if n = 4:
Length(S) = (4+1)*6 = 30.
  S: L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L
dir: 1,2,3,4,5,0,1,2,3,4,5,0,1,2,3,4,5,0,1,2,3,4,5,0,1,2,3,4,5,0
  S: L,L,L,L,L,L,L,R,R,R,R,L,R,R,R,R,R,L,L,L,L,R,R,L,L,L,L,R,L,L
dir: 1,2,3,4,5,0,1,1,0,5,4,4,4,3,2,1,0,0,1,2,3,3,2,2,3,4,5,5,5,0
  S: L,L,L,L,L,R,R,R,R,R,R,R,L,L,R,L,L,R,L,L,R,L,L,L,R,R,L,L,L,L
dir: 1,2,3,4,5,5,4,3,2,1,0,5,5,0,0,0,1,1,1,2,2,2,3,4,4,3,3,4,5,0
Each value of dir occurs 30/6 = 5 times.
		

Crossrefs

Programs

  • Maple
    A198258 := proc(n) local i, j, k, pow;
    pow := (a, b) -> if a=0 and b=0 then 1 else a^b fi;
    add(add(add((-1)^(j+i)*binomial(i,j)*binomial(n,k)^6*pow(n+1,j)*pow(k+1,5-j)/(k+1)^5, i=0..5),j=0..5),k=0..n) end:
    seq(A198258(n), n=0..16); # Peter Luschny, Nov 02 2011
  • Mathematica
    T[n_, k_] := (1 + n)(1 + 3 k + 3 k^2 - n - 3 k*n + n^2)(1 + k + k^2 + n - k*n + n^2) Binomial[n, k]^6/(1 + k)^5;
    a[n_] := Sum[T[n, k], {k, 0, n}];
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Jun 29 2019 *)
  • PARI
    A198258(n) = {sum(k=0,n,if(n == 1+2*k,6,(1+k)*(1-((n-k)/(1+k))^6)/(1+2*k-n))*binomial(n,k)^6)} \\ Peter Luschny, Nov 24 2011

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..5} Sum_{i=0..5} (-1)^(j+i)*C(i,j)*C(n,k)^6*(n+1)^j*(k+1)^(5-j)/(k+1)^5. - Peter Luschny, Nov 02 2011
a(n) = Sum_{k=0..n} h(n,k)*binomial(n,k)^6, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^6)/(1+2*k-n) if 1+2*k-n <> 0 else h(n,k) = 6. - Peter Luschny, Nov 24 2011
Conjecture: working with offset 1, that is, a(1) = 1, a(2) = 7, ..., then the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for positive integers n and r and all primes p >= 3. - Peter Bala, Mar 21 2023
a(n) ~ sqrt(3) * 2^(6*n+3) / (Pi*n)^(5/2). - Vaclav Kotesovec, Apr 17 2023

A198257 Row sums of A197654.

Original entry on oeis.org

1, 6, 94, 1700, 35466, 795312, 18848992, 464517468, 11801240050, 307073982116, 8147186436324, 219664321959524, 6003343077661216, 165975724832822400, 4634768975107569024, 130553813782898706908, 3705740233107582161538, 105902829964290241990332
Offset: 0

Author

Susanne Wienand, Oct 22 2011

Keywords

Comments

Number of meanders of length (n+1)*5 which are composed by arcs of equal length and a central angle of 72 degrees.
Definition of a meander:
A binary curve C is a triple (m, S, dir) such that
(a) S is a list with values in {L,R} which starts with an L,
(b) dir is a list of m different values, each value of S being allocated a value of dir,
(c) consecutive Ls increment the index of dir,
(d) consecutive Rs decrement the index of dir,
(e) the integer m>0 divides the length of S and
(f) C is a meander if each value of dir occurs length(S)/m times.
For this sequence, m = 5.
The terms are proved by brute force for 0 <= n <= 6, but not yet in general. [Susanne Wienand, Oct 29 2011]

Examples

			Some examples of list S and allocated values of dir if n = 5:
Length(S) = (5+1)*5 = 30.
  S: L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L
dir: 1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0
  S: L,L,L,L,L,L,L,L,L,L,L,L,L,R,L,R,R,R,R,R,L,R,L,L,L,L,R,R,R,L
dir: 1,2,3,4,0,1,2,3,4,0,1,2,3,3,3,3,2,1,0,4,4,4,4,0,1,2,2,1,0,0
  S: L,L,L,L,L,R,L,L,L,R,R,L,L,L,L,L,R,R,L,R,R,L,R,R,L,L,L,L,L,R
dir: 1,2,3,4,0,0,0,1,2,2,1,1,2,3,4,0,0,4,4,4,3,3,3,2,2,3,4,0,1,1
Each value of dir occurs 30/5 = 6 times.
		

Crossrefs

Programs

  • Maple
    A198257 := proc(n) local i, j, k, pow;
    pow := (a, b) -> if a=0 and b=0 then 1 else a^b fi;
    add(add(add((-1)^(j+i)*binomial(i,j)*binomial(n,k)^5*pow(n+1,j)*pow(k+1,4-j)/(k+1)^4, i=0..4),j=0..4),k=0..n) end: seq(A198257(n), n=0..16); # Peter Luschny, Nov 02 2011
  • Mathematica
    Table[Sum[Sum[ Sum[(-1)^(j + i) Binomial[i, j], {i, 0, 4}] Binomial[n, k]^5*(n + 1)^j*(k + 1)^(4 - j), {j, 0, 4}]/(k + 1)^4, {k, 0, n}], {n, 0, 17}] (* Michael De Vlieger, Aug 18 2016 *)
  • PARI
    A198257(n) = {sum(k=0,n,if(n == 1+2*k,5,(1+k)*(1-((n-k)/(1+k))^5)/(1+2*k-n))*binomial(n,k)^5)} \\ Peter Luschny, Nov 24 2011

Formula

a(n) = Sum{k=0..n} Sum{j=0..4} Sum{i=0..4} (-1)^(j+i)*C(i,j)*C(n,k)^5*(n+1)^j*(k+1)^(4-j)/(k+1)^4. - Peter Luschny, Nov 02 2011
a(n) = Sum_{k=0..n} h(n,k)*binomial(n,k)^5, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^5)/(1+2*k-n) if 1+2*k-n <> 0 else h(n,k) = 5. - Peter Luschny, Nov 24 2011
a(n) ~ sqrt(5) * 2^(5*n+2) / (Pi*n)^2. - Vaclav Kotesovec, Apr 17 2023

A197657 Row sums of A194595.

Original entry on oeis.org

1, 4, 22, 134, 866, 5812, 40048, 281374, 2006698, 14482064, 105527060, 775113440, 5731756720, 42628923040, 318621793472, 2391808860446, 18023208400634, 136271601087352, 1033449449559724, 7858699302115444, 59906766929537116, 457685157123172664
Offset: 0

Author

Susanne Wienand, Oct 17 2011

Keywords

Comments

Number of meanders of length (n+1)*3 which are composed by arcs of equal length and a central angle of 120 degrees.
Definition of a meander:
A binary curve C is a triple (m, S, dir) such that
(a) S is a list with values in {L,R} which starts with an L,
(b) dir is a list of m different values, each value of S being allocated a value of dir,
(c) consecutive Ls increment the index of dir,
(d) consecutive Rs decrement the index of dir,
(e) the integer m>0 divides the length of S and
(f) C is a meander if each value of dir occurs length(S)/m times.
For this sequence, m = 3.
For 0 <= n <= 16, a(n) = the hypergraph Fuss-Catalan number FC_1^(2,n+1) in the notation of Chavan et al. - see 7.1 in the Appendix. - Peter Bala, Apr 11 2023

Examples

			Some examples of list S and allocated values of dir if n = 4:
Length(S) = (4+1)*3 = 15.
  S: L,L,L,L,L,L,L,L,L,L,L,L,L,L,L
dir: 1,2,0,1,2,0,1,2,0,1,2,0,1,2,0
  S: L,L,L,L,R,L,L,R,L,L,R,L,L,L,L
dir: 1,2,0,1,1,1,2,2,2,0,0,0,1,2,0
  S: L,R,L,L,L,L,L,R,L,L,R,L,R,R,R
dir: 1,1,1,2,0,1,2,2,2,0,0,0,0,2,1
Each value of dir occurs 15/3 = 5 times.
		

Crossrefs

Programs

  • Maple
    A197657 := proc(n)
        (A000172(n) + A000172(n+1)) / 3 ;
    end proc; # R. J. Mathar, Jul 26 2014
    a := n -> 2^n*hypergeom([n + 1, -n/2, -n/2 - 1/2], [1, 1], 1):
    seq(simplify(a(n)), n = 0..21); # Peter Luschny, Mar 26 2023
  • Mathematica
    A197657[n_] := Sum[Sum[Sum[(-1)^(j + i)* Binomial[i, j]*Binomial[n, k]^3*(n + 1)^j*(k + 1)^(2 - j)/(k + 1)^2, {i, 0, 2}], {j, 0, 2}], {k, 0, n}]; Table[A197657[n], {n, 0, 16}]  (* Peter Luschny, Nov 02 2011 *)
  • PARI
    A197657(n) = {sum(k=0,n,if(n == 1+2*k,3,(1+k)*(1-((n-k)/(1+k))^3)/(1+2*k-n))*binomial(n,k)^3)} \\ Peter Luschny, Nov 24 2011
  • SageMath
    def A197657(n):
        return 2^n*hypergeometric([n + 1, -n/2, -n/2 - 1/2], [1, 1], 1).simplify_hypergeometric()
    for n in (0..21): print(A197657(n)) # Peter Luschny, Mar 26 2023
    

Formula

a(n) = Sum{k=0..n} Sum{j=0..2} Sum{i=0..2} (-1)^(j+i)*C(i,j)*C(n,k)^3*(n+1)^j*(k+1)^(2-j)/(k+1)^2. - Peter Luschny, Nov 02 2011
a(n) = Sum_{k=0..n} h(n,k)*binomial(n,k)^3, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^3)/(1+2*k-n) if 1+2*k-n <> 0 else h(n,k) = 3. - Peter Luschny, Nov 24 2011
a(n) = A141147(n+1)/2 = A110707(n+1)/6 = (A000172(n)+A000172(n+1))/3. - Max Alekseyev, Jul 15 2014
Conjecture: (n+1)^2*a(n) -3*(n+1)*(2*n+1)*a(n-1) -3*n*(5*n-7)*a(n-2) -8*(n-2)^2*a(n-3)=0. - R. J. Mathar, Jul 26 2014
a(n) = 2^n*hypergeom([n + 1, -n/2, -n/2 - 1/2], [1, 1], 1). - Peter Luschny, Mar 26 2023
a(n) ~ sqrt(3) * 2^(3*n+1) / (Pi*n). - Vaclav Kotesovec, Apr 17 2023

A197655 Triangle by rows T(n,k), showing the number of meanders with length (n+1)*6 and containing (k+1)*6 Ls and (n-k)*6 Rs, where Ls and Rs denote arcs of equal length and a central angle of 60 degrees which are positively or negatively oriented.

Original entry on oeis.org

1, 6, 1, 63, 126, 1, 364, 4374, 1092, 1, 1365, 85120, 127680, 5460, 1, 3906, 984375, 6000000, 1968750, 19530, 1, 9331, 7562646, 157828125, 210437500, 18906615, 55986, 1, 19608, 42824236, 2628749256, 11029593750, 4381248760, 128472708, 137256, 1
Offset: 0

Author

Susanne Wienand, Oct 19 2011

Keywords

Comments

Definition of a meander:
A binary curve C is a triple (m, S, dir) such that
(a) S is a list with values in {L,R} which starts with an L,
(b) dir is a list of m different values, each value of S being allocated a value of dir,
(c) consecutive Ls increment the index of dir,
(d) consecutive Rs decrement the index of dir,
(e) the integer m>0 divides the length of S and
(f) C is a meander if each value of dir occurs length(S)/m times.
For this sequence, m = 6.
The values in the triangle are proved by brute force for 0 <= n <= 5. The formulas are not yet proved in general.
The number triangle can be calculated recursively by the number triangles and A007318, A103371, A194595, A197653 and A197654. For n > 0, the first column seems to be A053700. The diagonal right hand is A000012. Row sums are in A198258.
The conjectured formulas are confirmed by dynamic programming for 0 <= n <= 19. - Susanne Wienand, Jul 04 2015

Examples

			For n = 4 and k = 2, T(n,k) = 127680
Example for recursive formula:
T(1,4,2) = 6
T(5,4,4-1-2) = T(5,4,1) = 13504
T(6,4,2) = 6^6 + 6*13504 = 127680
Example for closed formula:
T(4,2) = A + B + C + D + E + F
A = 6^6       =  46656
B = 6^5 * 4   =  31104
C = 6^4 * 4^2 =  20736
D = 6^3 * 4^3 =  13824
E = 6^2 * 4^4 =   9216
F = 6   * 4^5 =   6144
T(4,2)        = 127680
Some examples of list S and allocated values of dir if n = 4 and k = 2:
Length(S) = (4+1)*6 = 30 and S contains (2+1)*6 = 18 Ls.
  S: L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,R,R,R,R,R,R,R,R,R,R,R,R
dir: 1,2,3,4,5,0,1,2,3,4,5,0,1,2,3,4,5,0,0,5,4,3,2,1,0,5,4,3,2,1
  S: L,L,L,L,L,L,L,L,L,L,R,L,L,R,L,R,R,R,L,R,R,L,R,R,R,L,L,R,R,L
dir: 1,2,3,4,5,0,1,2,3,4,4,4,5,5,5,5,4,3,3,3,2,2,2,1,0,0,1,1,0,0
  S: L,L,L,L,R,L,L,R,L,L,R,L,R,R,L,L,L,L,L,R,R,L,L,L,R,R,R,R,L,R
dir: 1,2,3,4,4,4,5,5,5,0,0,0,0,5,5,0,1,2,3,3,2,2,3,4,4,3,2,1,1,1
Each value of dir occurs 30/6 = 5 times.
		

Programs

  • Maple
    A197655 := (n,k) -> (1+n)*(1+3*k+3*k^2-n-3*k*n+n^2)*(1+k+k^2+n-k*n+n^2)* binomial(n,k)^6/(1+k)^5; seq(print(seq(A197655(n, k), k=0..n)), n=0..7); # Peter Luschny, Oct 21 2011
  • Mathematica
    T[n_, k_] := (1 + n)(1 + 3k + 3k^2 - n - 3k*n + n^2)(1 + k + k^2 + n - k*n + n^2) Binomial[n, k]^6/(1 + k)^5;
    Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018, after Peter Luschny *)
  • PARI
    A197655(n,k) = {if(n==1+2*k,6,(1+k)*(1-((n-k)/(1+k))^6)/(1+2*k-n))*binomial(n,k)^6} \\ Peter Luschny, Nov 24 2011
  • Sage
    def S(N,n,k) : return binomial(n,k)^(N+1)*sum(sum((-1)^(N-j+i)*binomial(N-i,j)*((n+1)/(k+1))^j for i in (0..N) for j in (0..N)))
    def A197655(n,k) : return S(5,n,k)
    for n in (0..5) : print([A197655(n,k) for k in (0..n)])  # Peter Luschny, Oct 24 2011
    

Formula

recursive formula (conjectured):
T(n,k) = T(6,n,k)
T(6,n,k) = T(1,n,k)^6 + T(1,n,k)*T(5,n,n-1-k), 0 <= k < n
T(6,n,n) = 1 k = n
T(5,n,k) = T(1,n,k)^5 + T(1,n,k)*T(4,n,n-1-k), 0 <= k < n
T(5,n,n) = 1 k = n
T(4,n,k) = T(1,n,k)^4 + T(1,n,k)*T(3,n,n-1-k), 0 <= k < n
T(4,n,n) = 1 k = n
T(3,n,k) = T(1,n,k)^3 + T(1,n,k)*T(2,n,n-1-k), 0 <= k < n
T(3,n,n) = 1 k = n
T(2,n,k) = T(1,n,k)^2 + T(1,n,k)*T(1,n,n-1-k), 0 <= k < n
T(2,n,n) = 1 k = n
T(5,n,k) = A197654
T(4,n,k) = A197653
T(3,n,k) = A194595
T(2,n,k) = A103371
T(1,n,k) = A007318 (Pascal's Triangle)
closed formula (conjectured): T(n,n) = 1, k = n
T(n,k) = A + B + C + D + E + F, k < n
A = (C(n,k))^6
B = (C(n,k))^5 * C(n,n-1-k)
C = (C(n,k))^4 *(C(n,n-1-k))^2
D = (C(n,k))^3 *(C(n,n-1-k))^3
E = (C(n,k))^2 *(C(n,n-1-k))^4
F = C(n,k) *(C(n,n-1-k))^5
[Susanne Wienand]
Let S(n,k) = binomial(2*n,n)^(k+1)*((n+1)^(k+1)-n^(k+1))/(n+1)^k. Then T(2*n,n) = S(n,5). (Cf. A103371, A194595, A197653). [Peter Luschny, Oct 21 2011]
T(n,k) = A198065(n+1,k+1)C(n,k)^6/(k+1)^5. [Peter Luschny, Oct 29 2011]
T(n,k) = h(n,k)*binomial(n,k)^6, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^6)/(1+2*k-n) if 1+2*k-n <> 0 else h(n,k) = 6. [Peter Luschny, Nov 24 2011]

A197654 Triangle by rows T(n,k), showing the number of meanders with length 5(n+1) and containing 5(k+1) L's and 5(n-k) R's, where L's and R's denote arcs of equal length and a central angle of 72 degrees which are positively or negatively oriented.

Original entry on oeis.org

1, 5, 1, 31, 62, 1, 121, 1215, 363, 1, 341, 13504, 20256, 1364, 1, 781, 96875, 500000, 193750, 3905, 1, 1555, 501066, 7321875, 9762500, 1252665, 9330, 1, 2801, 2033647, 72656661, 262609375, 121094435, 6100941, 19607, 1
Offset: 0

Author

Susanne Wienand, Oct 19 2011

Keywords

Comments

Definition of a meander:
A binary curve C is a triple (m, S, dir) such that:
(a) S is a list with values in {L,R} which starts with an L,
(b) dir is a list of m different values, each value of S being allocated a value of dir,
(c) consecutive L's increment the index of dir,
(d) consecutive R's decrement the index of dir,
(e) the integer m>0 divides the length of S.
Then C is a meander if each value of dir occurs length(S)/m times.
Let T(m,n,k) = number of meanders (m, S, dir) in which S contains m(k+1) L's and m(n-k) R's, so that length(S) = m(n+1).
For this sequence, m = 5, T(n,k) = T(5,n,k).
The values in the triangle were proved by brute force for 0 <= n <= 6. The formulas have not yet been proved in general.
The number triangle can be calculated recursively by the number triangles and A007318, A103371, A194595 and A197653. The first column seems to be A053699. The diagonal right hand is A000012. The diagonal with k = n-1 seems to be A152031 and to start with the second number of A152031. Row sums are in A198257.
The conjectured formulas are confirmed by dynamic programming for 0 <= n <= 29. - Susanne Wienand, Jul 01 2015

Examples

			For n = 5 and k = 2, T(n,k) = 500000
Example for recursive formula:
T(1,5,2) = 10
T(4,5,5-1-2) = T(4,5,2) = 40000
T(5,5,2) = 10^5 + 10*40000 = 500000
Example for closed formula:
T(5,2) = A + B + C + D + E
A = 10^5
B = 10^4 * 10
C = 10^3 * 10^2
D = 10^2 * 10^3
E = 10   * 10^4
T(5,2) = 5 * 10^5 = 500000
Some examples of list S and allocated values of dir if n = 5 and k = 2:
Length(S) = (5+1)*5 = 30 and S contains (2+1)*5 = 15 Ls.
  S: L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R
dir: 1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,0,4,3,2,1,0,4,3,2,1,0,4,3,2,1
  S: L,L,L,L,L,L,L,R,R,L,L,R,R,R,L,R,R,R,L,R,L,L,L,R,R,L,R,R,R,R
dir: 1,2,3,4,0,1,2,2,1,1,2,2,1,0,0,0,4,3,3,3,3,4,0,0,4,4,4,3,2,1
  S: L,L,L,L,L,R,L,L,L,L,L,R,L,R,R,R,R,R,R,R,R,R,R,L,L,L,L,R,R,R
dir: 1,2,3,4,0,0,0,1,2,3,4,4,4,4,3,2,1,0,4,3,2,1,0,0,1,2,3,3,2,1
Each value of dir occurs 30/5 = 6 times.
The triangle begins:
1,
5, 1,
31, 62, 1,
121, 1215, 363, 1,
341, 13504, 20256, 1364, 1,
781, 96875, 500000, 193750, 3905, 1,
...
		

Programs

  • Maple
    A197654 := (n,k)->(k^4+2*k^3*(1-n)+2*k^2*(2+n+2*n^2)+k*(3+n-n^2-3*n^3)+ n^4+n^3+n^2+n+1)*binomial(n,k)^5/(1+k)^4;
    seq(print(seq(A197654(n, k), k=0..n)), n=0..7);  # Peter Luschny, Oct 20 2011
  • Mathematica
    T[n_, k_] := (k^4 + 2*k^3*(1-n) + 2*k^2*(2+n+2*n^2) + k*(3+n-n^2-3*n^3) + n^4+n^3+n^2+n+1)*Binomial[n, k]^5/(1+k)^4; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 20 2017, after Peter Luschny *)
  • PARI
    A197654(n,k) = {if(n ==1+2*k,5,(1+k)*(1-((n-k)/(1+k))^5)/(1+2*k-n))*binomial(n,k)^5} \\ Peter Luschny, Nov 24 2011
  • Sage
    def S(N,n,k) : return binomial(n,k)^(N+1)*sum(sum((-1)^(N-j+i)*binomial(N-i,j)*((n+1)/(k+1))^j for i in (0..N) for j in (0..N)))
    def A197654(n,k) : return S(4,n,k)
    for n in (0..5) : print([A197654(n,k) for k in (0..n)])  # Peter Luschny, Oct 24 2011
    

Formula

Recursive formula (conjectured):
T(n,k) = T(5,n,k) = T(1,n,k)^5 + T(1,n,k)*T(4,n,n-1-k), 0 <= k < n
T(5,n,n) = 1 k = n
T(4,n,k) = T(1,n,k)^4 + T(1,n,k) * T(3,n,n-1-k), 0 <= k < n
T(4,n,n) = 1 k = n
T(3,n,k) = T(1,n,k)^3 + T(1,n,k) * T(2,n,n-1-k), 0 <= k < n
T(3,n,n) = 1 k = n
T(2,n,k) = T(1,n,k)^2 + T(1,n,k) * T(1,n,n-1-k), 0<= k < n
T(2,n,n) = 1 k = n
T(4,n,k) = A197653
T(3,n,k) = A194595
T(2,n,k) = A103371
T(1,n,k) = A007318 (Pascal's Triangle)
Closed formula (conjectured): T(n,n) = 1, k = n
T(n,k) = A + B + C + D + E, k < n
A = (C(n,k))^5
B = (C(n,k))^4 * C(n,n-1-k)
C = (C(n,k))^3 *(C(n,n-1-k))^2
D = (C(n,k))^2 *(C(n,n-1-k))^3
E = C(n,k) *(C(n,n-1-k))^4 [Susanne Wienand]
Let S(n,k) = binomial(2*n,n)^(k+1)*((n+1)^(k+1)-n^(k+1))/(n+1)^k. Then T(2*n,n) = S(n,4). [Peter Luschny, Oct 20 2011]
T(n,k) = A198064(n+1,k+1)C(n,k)^5/(k+1)^4. [Peter Luschny, Oct 29 2011]
T(n,k) = h(n,k)*binomial(n,k)^5, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^5)/(1+2*k-n) if 1+2*k-n <> 0 else h(n,k) = 5. [Peter Luschny, Nov 24 2011]

A197653 Triangle by rows T(n,k), showing the number of meanders with length (n+1)*4 and containing (k+1)*4 Ls and (n-k)*4 Rs, where Ls and Rs denote arcs of equal length and a central angle of 90 degrees which are positively or negatively oriented.

Original entry on oeis.org

1, 4, 1, 15, 30, 1, 40, 324, 120, 1, 85, 2080, 3120, 340, 1, 156, 9375, 40000, 18750, 780, 1, 259, 32886, 328125, 437500, 82215, 1554, 1, 400, 96040, 1959216, 6002500, 3265360, 288120, 2800, 1
Offset: 0

Author

Susanne Wienand, Oct 17 2011

Keywords

Comments

Definition of a meander:
A binary curve C is a triple (m, S, dir) such that
(a) S is a list with values in {L,R} which starts with an L,
(b) dir is a list of m different values, each value of S being allocated a value of dir,
(c) consecutive Ls increment the index of dir,
(d) consecutive Rs decrement the index of dir,
(e) the integer m > 0 divides the length of S and
(f) C is a meander if each value of dir occurs length(S)/m times.
For this sequence, m = 4.
The values in the triangle are proved by brute force for 0 <= n <= 8. The formulas are not yet proved in general.
The number triangle can be calculated recursively by the number triangles A007318, A103371 and A194595. The first column of the triangle seems to be A053698. The diagonal right hand is A000012. The diagonal with k = n-1 seems to be A027445. Row sums are in A198256.
The conjectured formulas are confirmed by dynamic programming for 0 <= n <= 43. - Susanne Wienand, Jun 29 2015

Examples

			For n = 4 and k = 2, T(4,4,2) = 3120.
Recursive example:
T(1,4,0) = 1,
T(1,4,1) = 4,
T(1,4,2) = 6,
T(1,4,3) = 4,
T(1,4,4) = 1,
T(3,4,0) = 21,
T(3,4,1) = 304,
T(3,4,2) = 456,
T(3,4,3) = 84,
T(3,4,1) = 1,
T(4,4,2) = 6^4 + 6*304 = 3120.
Example for closed formula:
T(4,2) = 6^4 + 6^3 * 4 + 6^2 * 4^2 + 6 * 4^3 = 3120.
Some examples of list S and allocated values of dir if n = 4 and k = 2:
Length(S) = (4+1)*4 = 20 and S contains (2+1)*4 = 12 Ls.
  S: L,L,L,L,L,L,L,L,L,L,L,L,R,R,R,R,R,R,R,R
dir: 1,2,3,0,1,2,3,0,1,2,3,0,0,3,2,1,0,3,2,1
  S: L,L,L,R,L,L,R,L,L,R,R,L,L,L,R,L,L,R,R,R
dir: 1,2,3,3,3,0,0,0,1,1,0,0,1,2,2,2,3,3,2,1
  S: L,R,L,L,L,L,R,R,R,L,L,R,R,L,L,L,R,L,L,R
dir: 1,1,1,2,3,0,0,3,2,2,3,3,2,2,3,0,0,0,1,1
Each value of dir occurs 20/4 = 5 times.
Triangle begins:
   1;
   4,    1;
  15,   30,    1;
  40,  324,  120,   1;
  85, 2080, 3120, 340, 1;
  ...
		

Programs

  • Maple
    A197653 := (n,k) -> binomial(n,k)^4*(n+1)*(n^2-2*n*k+1+2*k+2*k^2)/((1+k)^3);
    seq(print(seq(A197653(n, k), k=0..n)), n=0..7); # Peter Luschny, Oct 19 2011
  • Mathematica
    T[n_, k_] := Binomial[n, k]^4 (n+1)(n^2 - 2n*k + 1 + 2k + 2k^2)/((1+k)^3);
    Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018, after Peter Luschny *)
  • PARI
    A197653(n,k) = {if(n==1+2*k,4,(1+k)*(1-((n-k)/(1+k))^4)/(1+2*k-n))*binomial(n,k)^4} \\ Peter Luschny, Nov 24 2011
  • Sage
    def S(N,n,k) : return binomial(n,k)^(N+1)*sum(sum((-1)^(N-j+i)*binomial(N-i,j)*((n+1)/(k+1))^j for i in (0..N) for j in (0..N)))
    def A197653(n,k) : return S(3,n,k)
    for n in (0..5) : print([A197653(n,k) for k in (0..n)])  ## Peter Luschny, Oct 24 2011
    

Formula

Recursive formula (conjectured):
T(n,k) = T(4,n,k)
T(4,n,k) = T(1,n,k)^4 + T(1,n,k)*T(3,n,n-1-k), 0 <= k < n
T(4,n,n) = 1 k = n
T(3,n,k) = T(1,n,k)^3 + T(1,n,k)*T(2,n,n-1-k), 0 <= k < n
T(3,n,n) = 1 k = n
T(2,n,k) = T(1,n,k)^2 + T(1,n,k)*T(1,n,n-1-k), 0 <= k < n
T(2,n,n) = 1 k = n
T(3,n,k) = A194595
T(2,n,k) = A103371
T(1,n,k) = A007318 (Pascal's Triangle)
closed formula (conjectured): T(n,n) = 1, k = n
T(n,k) = A + B + C + D, k < n
A = (C(n,k))^4
B = (C(n,k))^3 * C(n,n-1-k)
C = (C(n,k))^2 *(C(n,n-1-k))^2
D = C(n,k) *(C(n,n-1-k))^3
Let S(n,k) = binomial(2*n,n)^(k+1)*((n+1)^(k+1)-n^(k+1))/(n+1)^k. Then T(2*n,n) = S(n,3). - Peter Luschny, Oct 20 2011
T(n,k) = A198063(n+1,k+1)*C(n,k)^4/(k+1)^3. - Peter Luschny, Oct 29 2011
T(n,k) = h(n,k)*binomial(n,k)^4, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^4)/(1+2*k-n) if 1+2*k-n <> 0, otherwise h(n,k) = 4. - Peter Luschny, Nov 24 2011

A194595 Triangle by rows T(n,k), showing the number of meanders with length (n+1)*3 and containing (k+1)*3 L's and (n-k)*3 R's, where L's and R's denote arcs of equal length and a central angle of 120 degrees which are positively or negatively oriented.

Original entry on oeis.org

1, 3, 1, 7, 14, 1, 13, 81, 39, 1, 21, 304, 456, 84, 1, 31, 875, 3000, 1750, 155, 1, 43, 2106, 13875, 18500, 5265, 258, 1, 57, 4459, 50421, 128625, 84035, 13377, 399, 1, 73, 8576, 153664, 669536, 836920, 307328, 30016, 584, 1, 91, 15309, 409536, 2815344, 6001128, 4223016, 955584, 61236, 819, 1
Offset: 0

Author

Susanne Wienand, Oct 10 2011

Keywords

Comments

Definition of a meander:
A binary curve C is a triple (m, S, dir) such that
(a) S is a list with values in {L,R} which starts with an L,
(b) dir is a list of m different values, each value of S being allocated
a value of dir,
(c) consecutive L's increment the index of dir,
(d) consecutive R's decrement the index of dir,
(e) the integer m > 0 divides the length of S and
(f) C is a meander if each value of dir occurs length(S)/m times.
For this sequence, m = 3.
The values in the triangle are proved by brute force for 0 <= n <= 11. The formulas are not yet proved in general. - Susanne Wienand
Let S(N,n,k) = C(n,k)^(N+1)*Sum_{j=0..N} Sum_{i=0..N} (-1)^(N-j+i)*C(N-i,j)*((n+1)/(k+1))^j. Then S(0,n,k) = A007318(n,k), S(1,n,k) = A103371(n,k), S(2,n,k) = T(n,k), S(3,n,k) = A197653(n,k), S(4,n,k) = A197654(n,k), S(5,n,k) = A197655(n,k). - Peter Luschny, Oct 21 2011
The number triangle can be calculated recursively by the number triangles A103371 and A007318. The first column of the triangle contains the central polygonal numbers A002061. The diagonal right hand is A000012. The diagonal with k = n-1 seems to be A027444. Row sums are in A197657. - Susanne Wienand, Nov 24 2011
The conjectured formulas are confirmed by dynamic programming for 0 <= n <= 62. - Susanne Wienand, Jun 24 2015

Examples

			For n = 4 and k = 2, T(3,4,2) = 456.
Recursive example:
T(1,4,0) = 1
T(1,4,1) = 4
T(1,4,2) = 6
T(1,4,3) = 4
T(1,4,4) = 1
T(2,4,0) = 5
T(2,4,1) = 40
T(2,4,2) = 60
T(2,4,3) = 20
T(2,4,4) = 1
T(3,4,0) = T(1,4,0)^3 + T(1,4,0)*T(2,4,4-1-0) = 1^3 + 1*20 = 21
T(3,4,1) = T(1,4,1)^3 + T(1,4,1)*T(2,4,4-1-1) = 4^3 + 4*60 = 304
T(3,4,2) = T(1,4,2)^3 + T(1,4,2)*T(2,4,4-1-2) = 6^3 + 6*40 = 456
T(3,4,3) = T(1,4,3)^3 + T(1,4,3)*T(2,4,4-1-3) = 4^3 + 4*5  = 84
T(3,4,4) = 1.
Example for closed formula:
T(4,2) = (C(4,2))^3 + C(4,2) * C(4,3) * C(5,3) = 6^3 + 6 * 4 * 10 = 456.
Some examples of list S and allocated values of dir if n = 4 and k = 2:
Length(S) = (4+1)*3 = 15 and S contains (2+1)*3 = 9 L's.
  S: L,L,L,L,L,L,L,L,L,R,R,R,R,R,R
dir: 1,2,0,1,2,0,1,2,0,0,2,1,0,2,1
  S: L,L,R,L,L,L,L,R,R,L,R,R,L,R,L
dir: 1,2,2,2,0,1,2,2,1,1,1,0,0,0,0
  S: L,R,R,R,L,L,L,L,R,R,L,L,L,R,L
dir: 1,1,0,2,2,0,1,2,2,1,1,2,0,0,0
Each value of dir occurs 15/3 = 5 times.
		

Programs

  • Maple
    A194595 := (n,k)->binomial(n,k)^3*(k^2+k+1+n^2+n-k*n)/((k+1)^2);
    seq(print(seq(A194595(n,k),k=0..n)),n=0..7); # Peter Luschny, Oct 14 2011
  • Mathematica
    T[n_, k_] := Binomial[n, k]^3*(k^2 + k + 1 + n^2 + n - k*n)/((k + 1)^2);
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018, after Peter Luschny *)
  • PARI
    A194595(n,k) = {if(n == 1+2*k,3,(1+k)*(1-((n-k)/(1+k))^3)/(1+2*k-n))*binomial(n,k)^3} \\ Peter Luschny, Nov 24 2011

Formula

Recursive formula (conjectured):
T(n,k) = T(3,n,k) = T(1,n,k)^3 + T(1,n,k)*T(2,n,n-1-k), 0 <= k < n
T(3,n,n) = 1, k = n
T(2,n,k) = T(1,n,k)^2 + T(1,n,k) * T(1,n,n-1-k), 0 <= k < n
T(2,n,n) = 1, k = n
T(2,n,k) = A103371,
T(1,n,k) = A007318 (Pascal's Triangle).
Closed formula (conjectured): T(n,k) = (C(n,k))^3 + C(n,k) * C(n,k+1) * C(n+1,k+1). - Susanne Wienand
Let S(n,k) = binomial(2*n,n)^(k+1)*((n+1)^(k+1)-n^(k+1))/(n+1)^k. Then T(2*n,n) = S(n,2). - Peter Luschny, Oct 20 2011
T(n,k) = A073254(n+1,k+1)C(n,k)^3/(k+1)^2. - Peter Luschny, Oct 29 2011
T(n,k) = h(n,k)*binomial(n,k)^3, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^3)/(1+2*k-n) if 1+2*k-n <> 0 else h(n,k) = 3. - Peter Luschny, Nov 24 2011