A198257 Row sums of A197654.
1, 6, 94, 1700, 35466, 795312, 18848992, 464517468, 11801240050, 307073982116, 8147186436324, 219664321959524, 6003343077661216, 165975724832822400, 4634768975107569024, 130553813782898706908, 3705740233107582161538, 105902829964290241990332
Offset: 0
Keywords
Examples
Some examples of list S and allocated values of dir if n = 5: Length(S) = (5+1)*5 = 30. S: L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L dir: 1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0 S: L,L,L,L,L,L,L,L,L,L,L,L,L,R,L,R,R,R,R,R,L,R,L,L,L,L,R,R,R,L dir: 1,2,3,4,0,1,2,3,4,0,1,2,3,3,3,3,2,1,0,4,4,4,4,0,1,2,2,1,0,0 S: L,L,L,L,L,R,L,L,L,R,R,L,L,L,L,L,R,R,L,R,R,L,R,R,L,L,L,L,L,R dir: 1,2,3,4,0,0,0,1,2,2,1,1,2,3,4,0,0,4,4,4,3,3,3,2,2,3,4,0,1,1 Each value of dir occurs 30/5 = 6 times.
Links
- Peter Luschny, Meanders and walks on the circle.
- Project Euler, Robot Walks: Problem 208
Programs
-
Maple
A198257 := proc(n) local i, j, k, pow; pow := (a, b) -> if a=0 and b=0 then 1 else a^b fi; add(add(add((-1)^(j+i)*binomial(i,j)*binomial(n,k)^5*pow(n+1,j)*pow(k+1,4-j)/(k+1)^4, i=0..4),j=0..4),k=0..n) end: seq(A198257(n), n=0..16); # Peter Luschny, Nov 02 2011
-
Mathematica
Table[Sum[Sum[ Sum[(-1)^(j + i) Binomial[i, j], {i, 0, 4}] Binomial[n, k]^5*(n + 1)^j*(k + 1)^(4 - j), {j, 0, 4}]/(k + 1)^4, {k, 0, n}], {n, 0, 17}] (* Michael De Vlieger, Aug 18 2016 *)
-
PARI
A198257(n) = {sum(k=0,n,if(n == 1+2*k,5,(1+k)*(1-((n-k)/(1+k))^5)/(1+2*k-n))*binomial(n,k)^5)} \\ Peter Luschny, Nov 24 2011
Formula
a(n) = Sum{k=0..n} Sum{j=0..4} Sum{i=0..4} (-1)^(j+i)*C(i,j)*C(n,k)^5*(n+1)^j*(k+1)^(4-j)/(k+1)^4. - Peter Luschny, Nov 02 2011
a(n) = Sum_{k=0..n} h(n,k)*binomial(n,k)^5, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^5)/(1+2*k-n) if 1+2*k-n <> 0 else h(n,k) = 5. - Peter Luschny, Nov 24 2011
a(n) ~ sqrt(5) * 2^(5*n+2) / (Pi*n)^2. - Vaclav Kotesovec, Apr 17 2023
Comments