A197657 Row sums of A194595.
1, 4, 22, 134, 866, 5812, 40048, 281374, 2006698, 14482064, 105527060, 775113440, 5731756720, 42628923040, 318621793472, 2391808860446, 18023208400634, 136271601087352, 1033449449559724, 7858699302115444, 59906766929537116, 457685157123172664
Offset: 0
Examples
Some examples of list S and allocated values of dir if n = 4: Length(S) = (4+1)*3 = 15. S: L,L,L,L,L,L,L,L,L,L,L,L,L,L,L dir: 1,2,0,1,2,0,1,2,0,1,2,0,1,2,0 S: L,L,L,L,R,L,L,R,L,L,R,L,L,L,L dir: 1,2,0,1,1,1,2,2,2,0,0,0,1,2,0 S: L,R,L,L,L,L,L,R,L,L,R,L,R,R,R dir: 1,1,1,2,0,1,2,2,2,0,0,0,0,2,1 Each value of dir occurs 15/3 = 5 times.
Links
- Parth Chavan, Andrew Lee and Karthik Seetharaman, Hypergraph Fuss-Catalan numbers, arXiv:2202.01111 [math.CO]
- Peter Luschny, Meanders and walks on the circle.
- Susanne Wienand, Animation of a meander
- Susanne Wienand, Example of a meander
Programs
-
Maple
A197657 := proc(n) (A000172(n) + A000172(n+1)) / 3 ; end proc; # R. J. Mathar, Jul 26 2014 a := n -> 2^n*hypergeom([n + 1, -n/2, -n/2 - 1/2], [1, 1], 1): seq(simplify(a(n)), n = 0..21); # Peter Luschny, Mar 26 2023
-
Mathematica
A197657[n_] := Sum[Sum[Sum[(-1)^(j + i)* Binomial[i, j]*Binomial[n, k]^3*(n + 1)^j*(k + 1)^(2 - j)/(k + 1)^2, {i, 0, 2}], {j, 0, 2}], {k, 0, n}]; Table[A197657[n], {n, 0, 16}] (* Peter Luschny, Nov 02 2011 *)
-
PARI
A197657(n) = {sum(k=0,n,if(n == 1+2*k,3,(1+k)*(1-((n-k)/(1+k))^3)/(1+2*k-n))*binomial(n,k)^3)} \\ Peter Luschny, Nov 24 2011
-
SageMath
def A197657(n): return 2^n*hypergeometric([n + 1, -n/2, -n/2 - 1/2], [1, 1], 1).simplify_hypergeometric() for n in (0..21): print(A197657(n)) # Peter Luschny, Mar 26 2023
Formula
a(n) = Sum{k=0..n} Sum{j=0..2} Sum{i=0..2} (-1)^(j+i)*C(i,j)*C(n,k)^3*(n+1)^j*(k+1)^(2-j)/(k+1)^2. - Peter Luschny, Nov 02 2011
a(n) = Sum_{k=0..n} h(n,k)*binomial(n,k)^3, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^3)/(1+2*k-n) if 1+2*k-n <> 0 else h(n,k) = 3. - Peter Luschny, Nov 24 2011
Conjecture: (n+1)^2*a(n) -3*(n+1)*(2*n+1)*a(n-1) -3*n*(5*n-7)*a(n-2) -8*(n-2)^2*a(n-3)=0. - R. J. Mathar, Jul 26 2014
a(n) = 2^n*hypergeom([n + 1, -n/2, -n/2 - 1/2], [1, 1], 1). - Peter Luschny, Mar 26 2023
a(n) ~ sqrt(3) * 2^(3*n+1) / (Pi*n). - Vaclav Kotesovec, Apr 17 2023
Comments