cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A132812 Triangle read by rows, n>=1, 1<=k<=n, T(n,k) = k*binomial(n,k)^2/(n-k+1).

Original entry on oeis.org

1, 2, 2, 3, 9, 3, 4, 24, 24, 4, 5, 50, 100, 50, 5, 6, 90, 300, 300, 90, 6, 7, 147, 735, 1225, 735, 147, 7, 8, 224, 1568, 3920, 3920, 1568, 224, 8, 9, 324, 3024, 10584, 15876, 10584, 3024, 324, 9, 10, 450, 5400, 25200, 52920, 52920, 25200, 5400, 450, 10
Offset: 1

Views

Author

Gary W. Adamson, Sep 01 2007

Keywords

Comments

A127648 * A001263. (Original name by Gary W. Adamson.)
Let a meander be defined as in the link and m = 2. Then T(n,k) counts the invertible meanders of length m(n+1) built from arcs with central angle 360/m whose binary representation have mk '1's. - Peter Luschny, Dec 19 2011
Antidiagonal sums = A110320. - Philippe Deléham, Jun 08 2013

Examples

			First few rows of the triangle are:
  1;
  2, 2;
  3, 9, 3;
  4, 24, 24, 4;
  5, 50, 100, 50, 5;
  6, 90, 300, 300, 90, 6;
  ...
Row 4 = (4, 24, 24, 4) = 4 * (1, 6, 6, 1), where (1, 6, 6, 1) = row 4 of the Narayana triangle. - _Gary W. Adamson_
T(3,1) = 3 because the invertible meanders of length 8 and central angle 180 degree which have two '1's in their binary representation are {10000100, 10010000, 11000000}. - _Peter Luschny_, Dec 19 2011
		

Crossrefs

Programs

  • Maple
    A132812 := (n,k) -> k*binomial(n,k)^2/(n-k+1);
    seq(print(seq(A132812(n,k),k=0..n-1)),n=1..6); # Peter Luschny, Dec 19 2011
  • Mathematica
    Table[k Binomial[n, k]^2/(n - k + 1), {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Nov 15 2017 *)

Formula

A127648 * A001263 as infinite lower triangular matrices.
a(n) = n * A001263(n,k).
T(n,k) = binomial(n,k)*binomial(n,k-1). - Philippe Deléham, Jun 08 2013
G.f.: x*d(N(x,y))/dx, where N(x,y) is g.f. for Narayana numbers A001263. - Vladimir Kruchinin, Oct 22 2021

Extensions

New name from Peter Luschny, Dec 19 2011
a(53) corrected by Michael De Vlieger, Nov 15 2017

A201640 a(n) = Sum_{k=1..n} k*binomial(n, k)^3*(n^2 + n - k*n - k + k^2)/((n - k + 1)^2*n).

Original entry on oeis.org

1, 8, 54, 368, 2550, 17952, 128086, 924128, 6729858, 49395440, 364979560, 2712343680, 20257516240, 151957919232, 1144281700110, 8646263301056, 65531851263978, 498047725561104, 3794627850238756, 28976634967413920, 221728252767064596, 1699859618636556608
Offset: 1

Views

Author

Peter Luschny, Dec 19 2011

Keywords

Comments

Let a meander be defined as in the link and m = 3. Then a(n) counts the invertible meanders of length m*(n + 1) built from arcs with central angle 360/m.

Examples

			a(2) = 8 because (the binary representations of) the invertible meanders of length 9 and central angle 120 degree are {100100100, 110110110, 100011000, 111001110, 110001000, 111011100, 111000000, 111111000}.
		

Crossrefs

Row sums of A202409.
Cf. A000079 (m=1), A001791 (m=2), this sequence (m=3).

Programs

  • Maple
    A201640 := proc(n) add(k*binomial(n,k)^3*(n^2+n-k*n-k+k^2)/((n-k+1)^2*n),k=1..n) end; seq(A201640(n,k),n=1..22);
    # Alternative:
    h := (a, b, n) -> hypergeom([-n, -n, 1 - n], [a, b], -1):
    a := n -> h(1, 1, n) + (n - 1)*h(1, 2, n):
    seq(simplify(a(n)), n = 1..22); # Peter Luschny, Mar 16 2023
    # Recurrence:
    a := proc(n) option remember; if n < 3 then return [1, 8][n] fi;
    (8*n*(3*n - 1)*(n - 1)*(n - 2)*a(n-2) + n*(21*n^3 - 25*n^2 - 2*n + 8)*a(n-1)) /
    ((n - 1)*(n + 1)^2*(3*n - 4)) end: seq(a(n), n = 1..22); # Peter Luschny, Mar 16 2023
  • Mathematica
    Table[Sum[k*Binomial[n,k]^3*(n^2+n-k*n-k+k^2)/((n-k+1)^2*n),{k,1,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 24 2012 *)

Formula

Recurrence: (n+1)^2*a(n) = n*(13*n+2)*a(n-1) - 6*(2*n-1)*(3*n-5)*a(n-2) - 2*(17*n^2-62*n+32)*a(n-3) + 16*(n-4)*(n-3)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ sqrt(3)*8^n/(Pi*n). - Vaclav Kotesovec, Oct 24 2012
From Peter Luschny, Mar 16 2023: (Start)
a(n) = h(1, 1, n) + (n - 1)*h(1, 2, n), where h(a, b, n) = hypergeom([-n, -n, 1 - n], [a, b], -1).
a(n) = (8*n*(3*n - 1)*(n - 1)*(n - 2)*a(n - 2) + n*(21*n^3 - 25*n^2 - 2*n + 8)* a(n-1)) / ((n - 1)*(n + 1)^2*(3*n - 4)) for n >= 3. (End)

A361681 Triangle read by rows. T(n, k) is the number of Fibonacci meanders with a central angle of 360/m degrees that make m*k left turns and whose length is m*n, where m = 3.

Original entry on oeis.org

1, 2, 1, 5, 2, 1, 10, 8, 2, 1, 17, 40, 8, 2, 1, 26, 161, 44, 8, 2, 1, 37, 506, 263, 44, 8, 2, 1, 50, 1312, 1466, 268, 44, 8, 2, 1, 65, 2948, 6812, 1726, 268, 44, 8, 2, 1, 82, 5945, 26048, 11062, 1732, 268, 44, 8, 2, 1, 101, 11026, 84149, 64548, 11617, 1732, 268, 44, 8, 2, 1
Offset: 1

Views

Author

Peter Luschny, Mar 20 2023

Keywords

Comments

For an overview of the terms used see A361574, which gives the row sums of this triangle. The corresponding sequence counting meanders without the requirement of being Fibonacci is A202409.
The diagonals, starting from the main diagonal, converge to A141147?

Examples

			Triangle T(n, k) starts:
  [ 1]   1;
  [ 2]   2,     1;
  [ 3]   5,     2,     1;
  [ 4]  10,     8,     2,     1;
  [ 5]  17,    40,     8,     2,     1;
  [ 6]  26,   161,    44,     8,     2,    1;
  [ 7]  37,   506,   263,    44,     8,    2,   1;
  [ 8]  50,  1312,  1466,   268,    44,    8,   2,  1;
  [ 9]  65,  2948,  6812,  1726,   268,   44,   8,  2, 1;
  [10]  82,  5945, 26048, 11062,  1732,  268,  44,  8, 2, 1;
  [11] 101, 11026, 84149, 64548, 11617, 1732, 268, 44, 8, 2, 1.
.
T(4, 2) = 8 counts the Fibonacci meanders with central angle 120 degrees and length 12 that make 6 left turns. Written as binary strings (L = 1, R = 0):
110100100101, 111001001001, 111100010001, 111110000001, 111010010010,
111100100100, 111110001000, 111111000000.
		

Crossrefs

Cf. A361574 (row sums), A202409, A141147.

Programs

  • SageMath
    # using functions 'isMeander' and 'isFibonacci' from A361574.
    def FibonacciMeandersByLeftTurns(m: int, n: int) -> list[int]:
        size = m * n; A = [0] * n; k = -1
        for a in range(0, size + 1, m):
            S = [i < a for i in range(size)]
            for c in Permutations(S):
                if c[0] == 0: break
                if not isFibonacci(c): continue
                if not isMeander(m, c): continue
                A[k] += 1
            k += 1
        return A
    for n in range(1, 12):
        print(FibonacciMeandersByLeftTurns(3, n))
Showing 1-3 of 3 results.