A132812
Triangle read by rows, n>=1, 1<=k<=n, T(n,k) = k*binomial(n,k)^2/(n-k+1).
Original entry on oeis.org
1, 2, 2, 3, 9, 3, 4, 24, 24, 4, 5, 50, 100, 50, 5, 6, 90, 300, 300, 90, 6, 7, 147, 735, 1225, 735, 147, 7, 8, 224, 1568, 3920, 3920, 1568, 224, 8, 9, 324, 3024, 10584, 15876, 10584, 3024, 324, 9, 10, 450, 5400, 25200, 52920, 52920, 25200, 5400, 450, 10
Offset: 1
First few rows of the triangle are:
1;
2, 2;
3, 9, 3;
4, 24, 24, 4;
5, 50, 100, 50, 5;
6, 90, 300, 300, 90, 6;
...
Row 4 = (4, 24, 24, 4) = 4 * (1, 6, 6, 1), where (1, 6, 6, 1) = row 4 of the Narayana triangle. - _Gary W. Adamson_
T(3,1) = 3 because the invertible meanders of length 8 and central angle 180 degree which have two '1's in their binary representation are {10000100, 10010000, 11000000}. - _Peter Luschny_, Dec 19 2011
-
A132812 := (n,k) -> k*binomial(n,k)^2/(n-k+1);
seq(print(seq(A132812(n,k),k=0..n-1)),n=1..6); # Peter Luschny, Dec 19 2011
-
Table[k Binomial[n, k]^2/(n - k + 1), {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Nov 15 2017 *)
A201640
a(n) = Sum_{k=1..n} k*binomial(n, k)^3*(n^2 + n - k*n - k + k^2)/((n - k + 1)^2*n).
Original entry on oeis.org
1, 8, 54, 368, 2550, 17952, 128086, 924128, 6729858, 49395440, 364979560, 2712343680, 20257516240, 151957919232, 1144281700110, 8646263301056, 65531851263978, 498047725561104, 3794627850238756, 28976634967413920, 221728252767064596, 1699859618636556608
Offset: 1
a(2) = 8 because (the binary representations of) the invertible meanders of length 9 and central angle 120 degree are {100100100, 110110110, 100011000, 111001110, 110001000, 111011100, 111000000, 111111000}.
-
A201640 := proc(n) add(k*binomial(n,k)^3*(n^2+n-k*n-k+k^2)/((n-k+1)^2*n),k=1..n) end; seq(A201640(n,k),n=1..22);
# Alternative:
h := (a, b, n) -> hypergeom([-n, -n, 1 - n], [a, b], -1):
a := n -> h(1, 1, n) + (n - 1)*h(1, 2, n):
seq(simplify(a(n)), n = 1..22); # Peter Luschny, Mar 16 2023
# Recurrence:
a := proc(n) option remember; if n < 3 then return [1, 8][n] fi;
(8*n*(3*n - 1)*(n - 1)*(n - 2)*a(n-2) + n*(21*n^3 - 25*n^2 - 2*n + 8)*a(n-1)) /
((n - 1)*(n + 1)^2*(3*n - 4)) end: seq(a(n), n = 1..22); # Peter Luschny, Mar 16 2023
-
Table[Sum[k*Binomial[n,k]^3*(n^2+n-k*n-k+k^2)/((n-k+1)^2*n),{k,1,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 24 2012 *)
A361681
Triangle read by rows. T(n, k) is the number of Fibonacci meanders with a central angle of 360/m degrees that make m*k left turns and whose length is m*n, where m = 3.
Original entry on oeis.org
1, 2, 1, 5, 2, 1, 10, 8, 2, 1, 17, 40, 8, 2, 1, 26, 161, 44, 8, 2, 1, 37, 506, 263, 44, 8, 2, 1, 50, 1312, 1466, 268, 44, 8, 2, 1, 65, 2948, 6812, 1726, 268, 44, 8, 2, 1, 82, 5945, 26048, 11062, 1732, 268, 44, 8, 2, 1, 101, 11026, 84149, 64548, 11617, 1732, 268, 44, 8, 2, 1
Offset: 1
Triangle T(n, k) starts:
[ 1] 1;
[ 2] 2, 1;
[ 3] 5, 2, 1;
[ 4] 10, 8, 2, 1;
[ 5] 17, 40, 8, 2, 1;
[ 6] 26, 161, 44, 8, 2, 1;
[ 7] 37, 506, 263, 44, 8, 2, 1;
[ 8] 50, 1312, 1466, 268, 44, 8, 2, 1;
[ 9] 65, 2948, 6812, 1726, 268, 44, 8, 2, 1;
[10] 82, 5945, 26048, 11062, 1732, 268, 44, 8, 2, 1;
[11] 101, 11026, 84149, 64548, 11617, 1732, 268, 44, 8, 2, 1.
.
T(4, 2) = 8 counts the Fibonacci meanders with central angle 120 degrees and length 12 that make 6 left turns. Written as binary strings (L = 1, R = 0):
110100100101, 111001001001, 111100010001, 111110000001, 111010010010,
111100100100, 111110001000, 111111000000.
-
# using functions 'isMeander' and 'isFibonacci' from A361574.
def FibonacciMeandersByLeftTurns(m: int, n: int) -> list[int]:
size = m * n; A = [0] * n; k = -1
for a in range(0, size + 1, m):
S = [i < a for i in range(size)]
for c in Permutations(S):
if c[0] == 0: break
if not isFibonacci(c): continue
if not isMeander(m, c): continue
A[k] += 1
k += 1
return A
for n in range(1, 12):
print(FibonacciMeandersByLeftTurns(3, n))
Showing 1-3 of 3 results.
Comments