Original entry on oeis.org
1, 1, 2, 0, 5, 3, 0, 3, 15, 4, 0, 0, 22, 34, 5, 0, 0, 10, 90, 65, 6, 0, 0, 0, 95, 270, 111, 7, 0, 0, 0, 35, 490, 665, 175, 8, 0, 0, 0, 0, 406, 1820, 1428, 260, 9, 0, 0, 0, 0, 126, 2520, 5460, 2772, 369, 10, 0, 0, 0, 0, 0, 1722, 11130, 14070, 4980, 505, 11, 0, 0, 0, 0, 0, 462, 12474, 39270, 32340, 8415, 671, 12
Offset: 0
First few rows of the triangle:
1;
1, 2;
0, 5, 3;
0, 3, 15, 4;
0, 0, 22, 34, 5;
0, 0, 10, 90, 65, 6;
0, 0, 0, 95, 270, 111, 7;
...
A001791
a(n) = binomial coefficient C(2n, n-1).
Original entry on oeis.org
0, 1, 4, 15, 56, 210, 792, 3003, 11440, 43758, 167960, 646646, 2496144, 9657700, 37442160, 145422675, 565722720, 2203961430, 8597496600, 33578000610, 131282408400, 513791607420, 2012616400080, 7890371113950, 30957699535776, 121548660036300, 477551179875952
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- Cornelius Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 517.
- R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe and Matuszka Tamás, Table of n, a(n) for n = 0..1200 (terms n = 0..200 from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, Enumeration of multi-rooted plane trees, arXiv:2301.09765 [math.CO], 2023.
- Jean-Luc Baril and Sergey Kirgizov, The pure descent statistic on permutations, Discrete Mathematics, Vol. 340, No. 10 (2017), pp. 2550-2558; preprint, 2016.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
- Norman Biggs, Some odd graph theory, Second International Conference on Combinatorial Mathematics, Annals of the New York Academy of Sciences 319 (1979), 71-81.
- Miklós Bóna, Surprising Symmetries in Objects Counted by Catalan Numbers, Electronic J. Combin., 19 (2012), P62, eq. (6).
- Libor Caha and Daniel Nagaj, The pair-flip model: a very entangled translationally invariant spin chain, arXiv:1805.07168 [quant-ph], 2018.
- Jelena Đokic, A short note on the order of the double reduced 2-factor transfer digraph for rectangular grid graphs, arXiv:2308.04155 [math.CO], 2023.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 21.
- Guo-Niu Han, Enumeration of Standard Puzzles.
- Guo-Niu Han, Enumeration of Standard Puzzles. [Cached copy]
- A. Ivanyi, L. Lucz, T. Matuszka, and S. Pirzada, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 260-288.
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq., Vol. 17 (2014), Article 14.3.5.
- Christian Krattenthaler and Daniel Yaqubi, Some determinants of path generating functions, II, Advances in Applied Mathematics, Vol. 101 (2018), pp. 232-265; arXiv preprint, arXiv:1802.05990 [math.CO], 2018.
- Cornelius Lanczos, Applied Analysis. (Annotated scans of selected pages)
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Vol. 15 (2012), Article 12.3.3. - From _N. J. A. Sloane_, Sep 16 2012
- Mark Shattuck, Enumeration of non-crossing partitions according to subwords with repeated letters, arXiv:2303.06300 [math.CO], 2023.
- Zhi Lan Wang, Tautological integrals on symmetric products of curves, Acta Mathematica Sinica, English Series, Vol. 32, No. 8 (2016), pp. 901-910; arXiv preprint, arXiv:1506.08405 [math.AG], 2015-2016; alternative link.
- Jian Zhou, Fat and Thin Emergent Geometries of Hermitian One-Matrix Models, arXiv:1810.03883 [math-ph], 2018.
A345197 counts compositions by length and alternating sum.
Cf.
A000070,
A000302,
A000346,
A002054,
A008549,
A032443,
A088218,
A097805,
A163493,
A202736,
A345910.
-
List([0..30],n->Binomial(2*n,n-1)); # Muniru A Asiru, Aug 09 2018
-
[Binomial(2*n, n-1): n in [0..30]]; // Vincenzo Librandi, Apr 20 2015
-
Table[Binomial[2n,n-1],{n,0,30}] (* Harvey P. Dale, Jul 12 2012 *)
CoefficientList[ Series[(1 - 2x - Sqrt[1 - 4x])/(2x*Sqrt[1 - 4x]), {x, 0, 26}], x] (* Robert G. Wilson v, Aug 10 2018 *)
-
A001791(n):=binomial(2*n,n-1)$
makelist(A001791(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=if(n<1,0,(2*n)!/(n+1)!/(n-1)!)
A103371
Number triangle T(n,k) = C(n,n-k)*C(n+1,n-k).
Original entry on oeis.org
1, 2, 1, 3, 6, 1, 4, 18, 12, 1, 5, 40, 60, 20, 1, 6, 75, 200, 150, 30, 1, 7, 126, 525, 700, 315, 42, 1, 8, 196, 1176, 2450, 1960, 588, 56, 1, 9, 288, 2352, 7056, 8820, 4704, 1008, 72, 1, 10, 405, 4320, 17640, 31752, 26460, 10080, 1620, 90, 1, 11, 550, 7425, 39600, 97020
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 2 1
2: 3 6 1
3: 4 18 12 1
4: 5 40 60 20 1
5: 6 75 200 150 30 1
6: 7 126 525 700 315 42 1
7: 8 196 1176 2450 1960 588 56 1
8: 9 288 2352 7056 8820 4704 1008 72 1
9: 10 405 4320 17640 31752 26460 10080 1620 90 1
... reformatted. - _Wolfdieter Lang_, Jul 31 2017
From _R. J. Mathar_, Mar 29 2013: (Start)
The matrix inverse starts
1;
-2, 1;
9, -6, 1;
-76, 54, -12, 1;
1055, -760, 180, -20, 1;
-21906, 15825, -3800, 450, -30, 1;
636447, -460026, 110775, -13300, 945, -42, 1; (End)
O.g.f. of 4th diagonal [4, 40,200, ...] is G(3, x) = 4*(1 + 3*x + x^2)/(1 - x)^7, from the n = 3 row [1, 3, 1] of A001263. See a comment above. - _Wolfdieter Lang_, Jul 31 2017
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- Per Alexandersson, Svante Linusson, Samu Potka, and Joakim Uhlin, Refined Catalan and Narayana cyclic sieving, arXiv:2010.11157 [math.CO], 2020.
- Paul Barry and A. Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 16.
- R. Cori and G. Hetyei, Counting genus one partitions and permutations, arXiv:1306.4628 [math.CO], 2013.
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), 51-62.
-
a103371 n k = a103371_tabl !! n !! k
a103371_row n = a103371_tabl !! n
a103371_tabl = map reverse a132813_tabl
-- Reinhard Zumkeller, Apr 04 2014
-
/* As triangle */ [[Binomial(n,n-k)*Binomial(n+1,n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 01 2017
-
A103371 := (n,k) -> binomial(n,k)^2*(n+1)/(k+1);
seq(print(seq(A103371(n, k), k=0..n)), n=0..7); # Peter Luschny, Oct 19 2011
-
Flatten[Table[Binomial[n,n-k]Binomial[n+1,n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, May 26 2014 *)
CoefficientList[Series[Series[E^(x(1+y))(BesselI[0,2*x*Sqrt[y]]+BesselI[1,2*x*Sqrt[y]]/Sqrt[y]),{x,0,8}],{y,0,8}],{x,y}]*Range[0,8]! (* Natalia L. Skirrow, Apr 14 2025 *)
-
create_list(binomial(n,k)*binomial(n+1,k+1),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
for(n=0,10, for(k=0,n, print1(binomial(n,k)*binomial(n+1,k+1), ", "))) \\ G. C. Greubel, Nov 09 2018
A110320
Number of blocks in all RNA secondary structures with n nodes (an RNA secondary structure can be viewed as a restricted noncrossing partition).
Original entry on oeis.org
1, 2, 5, 13, 32, 80, 201, 505, 1273, 3217, 8146, 20668, 52531, 133726, 340909, 870213, 2223958, 5689807, 14571335, 37350585, 95821071, 246015677, 632088930, 1625119218, 4180845277, 10762096850, 27718352411, 71426753423, 184146711578
Offset: 1
a(4)=13 because the 4 (=A004148(4)) RNA secondary structures of size 4, namely 1/2/3/4, 13/2/4, 14/2/3 and 1/24/3, have altogether 4+3+3+3=13 blocks.
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Jean-Luc Baril, Sergey Kirgizov, Rémi Maréchal, and Vincent Vajnovszki, Grand Dyck paths with air pockets, arXiv:2211.04914 [math.CO], 2022.
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- Peter McCalla and Asamoah Nkwanta, Catalan and Motzkin Integral Representations, arXiv:1901.07092 [math.NT], 2019.
- W. R. Schmitt and M. S. Waterman, Linear trees and RNA secondary structure, Discrete Appl. Math., 51, 317-323, 1994.
- P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1978), 261-272.
- M. Vauchassade de Chaumont and G. Viennot, Polynomes orthogonaux et problèmes d'énumeration en biologie moléculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.
-
G:=1/2*(1-z-z^2)/z^2/(1-2*z-z^2-2*z^3+z^4)^(1/2)-1/2*1/(z^2): Gser:=series(G,z=0,37): seq(coeff(Gser,z^n),n=1..33);
-
Table[Sum[Binomial[n-j+1,j]Binomial[n-j+1,j-1],{j, 0, n}],{n,1,25}] (* Benedict W. J. Irwin, Sep 24 2016 *)
A209805
Triangle read by rows: T(n,k) is the number of k-block noncrossing partitions of n-set up to rotations.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 10, 10, 3, 1, 1, 3, 15, 25, 15, 3, 1, 1, 4, 26, 64, 64, 26, 4, 1, 1, 4, 38, 132, 196, 132, 38, 4, 1, 1, 5, 56, 256, 536, 536, 256, 56, 5, 1, 1, 5, 75, 450, 1260, 1764, 1260, 450, 75, 5, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 2, 4, 2, 1;
1, 3, 10, 10, 3, 1;
1, 3, 15, 25, 15, 3, 1;
1, 4, 26, 64, 64, 26, 4, 1;
1, 4, 38, 132, 196, 132, 38, 4, 1;
1, 5, 56, 256, 536, 536, 256, 56, 5, 1;
-
b[n_, k_] := Binomial[n-1, n-k] Binomial[n, n-k];
T[n_, k_] := (DivisorSum[GCD[n, k], EulerPhi[#] b[n/#, k/#]&] + DivisorSum[GCD[n, k - 1], EulerPhi[#] b[n/#, (n + 1 - k)/#]&] - k Binomial[n, k]^2/(n - k + 1))/n;
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
-
b(n,k)=binomial(n-1,n-k)*binomial(n,n-k);
T(n,k)=(sumdiv(gcd(n,k), d, eulerphi(d)*b(n/d,k/d)) + sumdiv(gcd(n,k-1), d, eulerphi(d)*b(n/d,(n+1-k)/d)) - k*binomial(n,k)^2/(n-k+1))/n; \\ Andrew Howroyd, Nov 15 2017
A202409
Triangle read by rows, n>=1, 1<=k<=n, T(n,k) = k*binomial(n,k)^3*(n^2+n-k*n-k+k^2)/((n-k+1)^2*n).
Original entry on oeis.org
1, 4, 4, 9, 36, 9, 16, 168, 168, 16, 25, 550, 1400, 550, 25, 36, 1440, 7500, 7500, 1440, 36, 49, 3234, 30135, 61250, 30135, 3234, 49, 64, 6496, 98784, 356720, 356720, 98784, 6496, 64, 81, 11988, 278208, 1629936, 2889432, 1629936, 278208, 11988, 81
Offset: 1
[1] 1
[2] 4, 4
[3] 9, 36, 9
[4] 16, 168, 168, 16
[5] 25, 550, 1400, 550, 25
[6] 36, 1440, 7500, 7500, 1440, 36
T(2,1) = 4 because the invertible meanders of length 9 and central angle 120 degree which have three '1's in their binary representation are {100100100, 100011000, 110001000, 111000000}.
-
A202409 := (n,k) -> k*binomial(n,k)^3*(n^2+n-k*n-k+k^2)/((n-k+1)^2*n);
seq(print(seq(A202409(n,k),k=1..n)),n=1..6);
-
t[n_, k_] := k*Binomial[n, k]^3*(n^2 + n - k*n - k + k^2)/((n - k + 1)^2*n); Table[t[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 02 2013 *)
A241475
Triangle t(n,r) = s(n,r)*s(n,r+1), where s(n,r) = lcm(n,n-1,...,n-r+1)/lcm(1,2,...,r-1,r), n >= 1 and 0 <= r < n.
Original entry on oeis.org
1, 2, 2, 3, 9, 3, 4, 24, 12, 2, 5, 50, 100, 50, 5, 6, 90, 150, 50, 5, 1, 7, 147, 735, 1225, 245, 49, 7, 8, 224, 784, 1960, 980, 196, 28, 2, 9, 324, 3024, 3528, 1764, 1764, 252, 18, 3, 10, 450, 2700, 12600, 8820, 1764, 252, 18, 3, 1, 11, 605, 9075, 54450, 152460, 213444, 30492, 2178, 363, 121, 11
Offset: 1
Triangle begins:
1;
2, 2;
3, 9, 3;
4, 24, 12, 2;
5, 50, 100, 50, 5;
6, 90, 150, 50, 5, 1;
...
- S. M. Khairnar, Anant W. Vyawahare and J. N. Salunkhe, On Smarandache least common multiple ratio, Scientia Magna Vol. 5 (2009), No. 1, 29-36.
- Amarnath Murthy, Some Notions on Least Common Multiples, Smarandache Notions Journal, Vol. 12, No. 1-2-3, Spring 2001.
-
s[, 0] = 1; s[n, r_?NumericQ] := LCM @@ Table[n-k+1, {k, 1, r}] / LCM @@ Table[k, {k, 1, r}]; t[n_, r_] := s[n, r]*s[n, r+1]; Table[t[n, r] , {n, 1, 12}, {r, 0, n-1}] // Flatten
A361894
Triangle read by rows. T(n, k) is the number of Fibonacci meanders with a central angle of 360/m degrees that make m*k left turns and whose length is m*n, where m = 2.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 4, 6, 2, 1, 5, 16, 6, 2, 1, 6, 35, 20, 6, 2, 1, 7, 66, 65, 20, 6, 2, 1, 8, 112, 186, 70, 20, 6, 2, 1, 9, 176, 462, 246, 70, 20, 6, 2, 1, 10, 261, 1016, 812, 252, 70, 20, 6, 2, 1, 11, 370, 2025, 2416, 917, 252, 70, 20, 6, 2, 1, 12, 506, 3730, 6435, 3256, 924, 252, 70, 20, 6, 2, 1
Offset: 1
Triangle T(n, k) starts:
[ 1] 1;
[ 2] 2, 1;
[ 3] 3, 2, 1;
[ 4] 4, 6, 2, 1;
[ 5] 5, 16, 6, 2, 1;
[ 6] 6, 35, 20, 6, 2, 1;
[ 7] 7, 66, 65, 20, 6, 2, 1;
[ 8] 8, 112, 186, 70, 20, 6, 2, 1;
[ 9] 9, 176, 462, 246, 70, 20, 6, 2, 1;
[10] 10, 261, 1016, 812, 252, 70, 20, 6, 2, 1;
[11] 11, 370, 2025, 2416, 917, 252, 70, 20, 6, 2, 1;
[12] 12, 506, 3730, 6435, 3256, 924, 252, 70, 20, 6, 2, 1.
.
T(4, k) counts Fibonacci meanders with central angle 180 degrees and length 8 that make k left turns. Written as binary strings (L = 1, R = 0):
k = 1: 11000000, 10010000, 10000100, 10000001;
k = 2: 11110000, 11100100, 11100001, 11010010, 11001001, 10100101;
k = 3: 11111100, 11111001;
k = 4: 11111111.
Showing 1-8 of 8 results.
Comments