cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001246 Squares of Catalan numbers.

Original entry on oeis.org

1, 1, 4, 25, 196, 1764, 17424, 184041, 2044900, 23639044, 282105616, 3455793796, 43268992144, 551900410000, 7152629313600, 93990019574025, 1250164827828900, 16807771574144100, 228138727737690000, 3123219182728976100, 43087676888260976400, 598598221893939680400, 8369059450146650049600
Offset: 0

Views

Author

Keywords

Comments

Also multi-component meanders.
Also, number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of 2 n steps taken from {(-1, -1), (-1, 1), (1, -1), (1, 1)}. [Evans and Pugh show that this is the same sequence.] - N. J. A. Sloane, Jul 04 2014
This is probably the diagonal of A209805. In this case a(n) = number of non-crossing partitions up to rotation of [2n+1] into n+1 blocks. See "Partition related number triangles" in Links section. - Tilman Piesk, Apr 09 2012
a(n) is also the number of regular cover graphs of lattice quotients of essential lattice congruences of the weak order on the symmetric group S_{n+1}. See Table 1 in the Hoang/Mütze reference in the Links section. - Torsten Muetze, Nov 28 2019

Crossrefs

Row sums of triangle A008828.
Probably diagonal of A209805.

Programs

  • GAP
    List([0..25],n->(Binomial(2*n,n)/(n+1))^2); # Muniru A Asiru, Mar 28 2018
  • Maple
    seq((binomial(2*n,n)/(1+n))^2, n=0..18); # Zerinvary Lajos, Jun 18 2007
  • Mathematica
    aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, 2 n], {n, 0, 25}] (* Manuel Kauers, Nov 18 2008 *)
    CatalanNumber[Range[0,30]]^2  (* Harvey P. Dale, Apr 26 2011 *)
    a[ n_] := If[ n == -1, 0, CatalanNumber[ n]^2] (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ (2 EllipticE[ 16 x] - (1 - 16 x) EllipticK[ 16 x] - Pi/2) / ( 2 Pi x), {x, 0, n}] (* Michael Somos, Jul 11 2011 *)
    a[ n_] := If[ n < 0, 0, (2 n)! SeriesCoefficient[ HypergeometricPFQ[ {1/2}, {2, 2}, 4 x^2], {x, 0, 2 n}]] (* Michael Somos, Jul 11 2011 *)
  • MuPAD
    combinat::dyckWords::count(n)^2 $ n = 0..18 // Zerinvary Lajos, Feb 15 2007
    
  • PARI
    a(n)=(binomial(2*n,n)/(n+1))^2 \\ Charles R Greathouse IV, Jul 16 2011
    
  • Sage
    [catalan_number(i)^2 for i in range(0,19)] # Zerinvary Lajos, May 17 2009
    

Formula

G.f.: -1/(4*x)+1/2*(16*x-1)/x * EllipticK(4*x^(1/2))/Pi + 1/x*EllipticE(4*x^(1/2))/Pi. - Vladeta Jovovic, Oct 12 2003
G.f.: 3F2( (1, 1/2, 1/2); (2, 2); 16x) = (-1 + 2F1( (-1/2, -1/2); (1); 16x))/(4*x) - Olivier Gérard, Feb 16 2011
E.g.f.: hypergeom([1/2], [2, 2], 4*x^2) = 2*BesselI(0, 2*x)^2-BesselI(0, 2*x)*BesselI(1, 2*x)/x-2*BesselI(1, 2*x)^2. - Vladeta Jovovic, Jun 04 2005
D-finite with recurrence (n+1)^2*a(n) -4*(2*n-1)^2*a(n-1)=0. - R. J. Mathar, Jan 04 2013
From Ilya Gutkovskiy, Mar 23 2017: (Start)
a(n) ~ 16^n/(Pi*n^3).
Sum_{n>=0} 1/a(n) = 3F2(1,2,2; 1/2,1/2; 1/16) = 2.295732295098655... (End)
Sum {n>=0} a(n)*(n+1)/16^n = 4/Pi. This is a kind of Ramanujan-Sato series. - Ralf Steiner, Mar 23 2017
From Peter Bala, Mar 28 2018: (Start)
a(n) = 1/(2*n + 1)*f(2*n)/(f(n)*f(n)), where f(n) = n!*(n+1)!. Cf. Catalan(n) = 1/(n + 1)*(2*n)!/(n!*n!).
a(n) = 1/(2*n + 1)*A000891(n).
a(n) = (n + 2)/(2*n + 1)*A000356(n).
a(n) = (n + 2)/3*A186264(n-1). (End)
From Amiram Eldar, Mar 27 2022: (Start)
a(n) = A000108(n)^2.
Sum_{n>=0} a(n)/16^n = 16/Pi - 4. (End)

Extensions

As a result of the work of Evans and Pugh, it was possible to merge A151342 with this sequence. - N. J. A. Sloane, Jul 04 2014

A054357 Number of unlabeled 2-ary cacti having n polygons. Also number of bicolored plane trees with n edges.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 28, 63, 190, 546, 1708, 5346, 17428, 57148, 191280, 646363, 2210670, 7626166, 26538292, 93013854, 328215300, 1165060668, 4158330416, 14915635378, 53746119972, 194477856100, 706437056648, 2575316704200, 9419571138368
Offset: 0

Views

Author

Keywords

Comments

a(n) = the number of inequivalent non-crossing partitions of n points (equally spaced) on a circle, under rotations of the circle. This may be considered the number of non-crossing partitions of n unlabeled points on a circle, so this sequence has the same relation to the Catalan numbers (A000108) as the number of partitions of an integer (A000041) has to the Bell numbers (A000110). - Len Smiley, Sep 06 2005

Crossrefs

Column k=2 of A303912.
Row sums of A209805.

Programs

  • Mathematica
    a[n_] := If[n == 0, 1, (Binomial[2*n, n]/(n + 1) + DivisorSum[n, Binomial[2*#, #]*EulerPhi[n/#]*Boole[# < n] & ])/n]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jul 17 2017 *)
  • PARI
    a(n)=if(n==0, 1, (binomial(2*n, n)/(n + 1) + sumdiv(n, d, binomial(2*d, d)*eulerphi(n/d)*(dIndranil Ghosh, Jul 17 2017
    
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, eulerphi(n/d)*binomial(2*d, d))/n - binomial(2*n, n)/(n+1)) \\ Andrew Howroyd, May 02 2018
    
  • Python
    from sympy import binomial, divisors, totient
    def a(n): return 1 if n==0 else (binomial(2*n, n)//(n + 1) + sum(binomial(2*d, d)*totient(n//d)*(dIndranil Ghosh, Jul 17 2017

Formula

a(n) = (1/n)*(Sum_{d|n} phi(n/d)*binomial(2*d, d)) - binomial(2*n, n)/(n+1) for n > 0. - Andrew Howroyd, May 02 2018
a(n) ~ 2^(2*n) / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Jul 17 2017

Extensions

More terms from Len Smiley, Sep 06 2005
More terms from Vladeta Jovovic, Oct 04 2007

A303694 Array read by antidiagonals: T(n,k) is the number of noncrossing partitions up to rotation composed of n blocks of size k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 7, 6, 1, 1, 1, 1, 3, 11, 19, 14, 1, 1, 1, 1, 4, 17, 52, 86, 34, 1, 1, 1, 1, 4, 25, 102, 307, 372, 95, 1, 1, 1, 1, 5, 33, 187, 811, 1936, 1825, 280, 1, 1, 1, 1, 5, 43, 300, 1772, 6626, 13207, 9143, 854, 1
Offset: 0

Views

Author

Andrew Howroyd, Apr 28 2018

Keywords

Comments

Also, the number of unlabeled planar k-gonal cacti having n polygons.
The number of noncrossing partitions counted distinctly is given by A070914(n,k-1).

Examples

			Array begins:
==================================================================
n\k| 1   2    3     4      5       6       7        8        9
---+--------------------------------------------------------------
0  | 1   1    1     1      1       1       1        1        1 ...
1  | 1   1    1     1      1       1       1        1        1 ...
2  | 1   1    1     1      1       1       1        1        1 ...
3  | 1   2    2     3      3       4       4        5        5 ...
4  | 1   3    7    11     17      25      33       43       55 ...
5  | 1   6   19    52    102     187     300      463      663 ...
6  | 1  14   86   307    811    1772    3412     5993     9821 ...
7  | 1  34  372  1936   6626   17880   40770    82887   154079 ...
8  | 1  95 1825 13207  58385  191967  518043  1213879  2558305 ...
9  | 1 280 9143 93496 532251 2141232 6830545 18471584 44121134 ...
...
		

Crossrefs

Programs

  • Mathematica
    T[0, _] = 1;
    T[n_, k_] := (DivisorSum[n, EulerPhi[n/#] Binomial[k #, #]&] + DivisorSum[ GCD[n-1, k], EulerPhi[#] Binomial[n k/#, (n-1)/#]&])/(k n) - Binomial[k n, n]/(n (k-1) + 1);
    Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, May 22 2018 *)
  • PARI
    T(n,k)={if(n==0, 1, (sumdiv(n,d,eulerphi(n/d)*binomial(k*d,d)) + sumdiv(gcd(n-1,k), d, eulerphi(d)*binomial(n*k/d, (n-1)/d)))/(k*n) - binomial(k*n,n)/(n*(k-1)+1))}

Formula

T(n,k) = ((Sum_{d|n} phi(n/d)*binomial(k*d,d)) + (Sum_{d|gcd(n-1,k)} phi(d) * binomial(n*k/d, (n-1)/d)))/(k*n) - binomial(k*n,n)/(n*(k-1)+1) for n > 0.
T(n,k) ~ A070914(n,k-1)/(n*k) for fixed k > 1.

A209612 Triangle read by rows: T(n,k) is the number of k-block noncrossing partitions of n-set up to rotations and reflections.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 8, 8, 3, 1, 1, 3, 12, 17, 12, 3, 1, 1, 4, 19, 41, 41, 19, 4, 1, 1, 4, 27, 78, 116, 78, 27, 4, 1, 1, 5, 38, 148, 298, 298, 148, 38, 5, 1, 1, 5, 50, 250, 680, 932, 680, 250, 50, 5, 1
Offset: 1

Views

Author

Tilman Piesk, Mar 10 2012

Keywords

Comments

Like the Narayana triangle A001263 (and unlike A152176) this triangle is symmetric.

Examples

			Triangle begins:
1;
1,  1;
1,  1,  1;
1,  2,  2,  1;
1,  2,  4,  2,  1;
1,  3,  8,  8,  3,  1;
1,  3, 12, 17, 12,  3,  1;
1,  4, 19, 41, 41, 19,  4,  1;
1,  4, 27, 78,116, 78, 27,  4,  1;
1,  5, 38,148,298,298,148, 38,  5,  1
		

Crossrefs

Cf. A111275 (row sums)

Programs

  • Mathematica
    b[n_, k_] := Binomial[n - 1, n - k]*Binomial[n, n - k];
    T[n_, k_] := (n*Binomial[Quotient[n - 1, 2], Quotient[k - 1, 2]]*Binomial[ Quotient[n, 2], Quotient[k, 2]] + DivisorSum[GCD[n, k], EulerPhi[#]* b[n/#, k/#]&] + DivisorSum[GCD[n, k - 1], EulerPhi[#]*b[n/#, (n + 1 - k)/#]&] - k*Binomial[n, k]^2/(n - k + 1))/(2*n);
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 30 2018, after Andrew Howroyd *)
  • PARI
    b(n,k)=binomial(n-1,n-k)*binomial(n,n-k);
    T(n,k)=(n*binomial((n-1)\2, (k-1)\2)*binomial(n\2, k\2) + sumdiv(gcd(n,k), d, eulerphi(d)*b(n/d,k/d)) + sumdiv(gcd(n,k-1), d, eulerphi(d)*b(n/d,(n+1-k)/d)) - k*binomial(n,k)^2/(n-k+1))/(2*n); \\ Andrew Howroyd, Nov 15 2017

Formula

T(n,k) = (A088855(n,k) + A209805(n,k))/2. - Andrew Howroyd, Nov 15 2017
Showing 1-4 of 4 results.