cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Neven Sajko

Neven Sajko's wiki page.

Neven Sajko has authored 3 sequences.

A364402 a(n) = (3*n)!*(10*n)!/((2*n)!*(5*n)!*(6*n)!).

Original entry on oeis.org

1, 126, 41990, 15967980, 6421422150, 2663825039876, 1127155102890908, 483537022180231320, 209536624110664757830, 91505601042318156186900, 40205863224219682380130740, 17753412284992688334256754280, 7871411119532225034145860092700, 3502017467737750755575471520717480
Offset: 0

Author

Neven Sajko, Jul 22 2023

Keywords

Comments

Member of Bober's second infinite family of integral factorial ratio sequences with a=5 and b=3 (see equation 11 at p. 16 in Bober).

Crossrefs

Bisection of A262732. Cf. A182400, A211419.

Programs

  • Maple
    seq( (3*n)!*(10*n)!/((2*n)!*(5*n)!*(6*n)!), n = 0..20); # Peter Bala, Sep 24 2023
  • PARI
    a(n) = (3*n)!*(10*n)!/((2*n)!*(5*n)!*(6*n)!); \\ Michel Marcus, Sep 20 2023

Formula

a(n) = 10*(10*n - 1)*(10*n - 3)*(10*n - 7)*(10*n - 9)/(3*n*(2*n - 1)*(6*n - 1)*(6*n - 5))*a(n-1).
a(n) ~ 2^(2*n-1) * 5^(5*n) / (sqrt(Pi*n) * 3^(3*n)). - Vaclav Kotesovec, Sep 21 2023
From Peter Bala, Sep 24 2023: (Start)
a(n) = A262732(2*n).
a(n) = [x^(2*n)] (1 + 4*x)^((10*n-1)/2) = 16^n * binomial((10*n-1)/2, 2*n).
O.g.f. A(x) = hypergeom([9/10, 7/10, 3/10, 1/10], [5/6, 1/2, 1/6], (12500/27)*x).
(End)

A308258 Decimal expansion of convergent series Sum_{n >= 1} (sin(n)/2)^n.

Original entry on oeis.org

6, 2, 6, 5, 2, 7, 5, 6, 8, 8, 1, 2, 8, 0, 6, 7, 2, 2, 0, 7, 0, 1, 8, 3, 3, 6, 6, 2, 3, 1, 1, 2, 5, 1, 5, 3, 9, 0, 5, 1, 2, 2, 7, 7, 8, 1, 0, 9, 2, 6, 9, 4, 0, 4, 9, 4, 2, 6, 4, 9, 8, 8, 3, 5, 4, 7, 4, 0, 1, 5, 9, 8, 1, 3, 2, 8, 7, 6, 6, 4, 9, 8, 4, 7, 9, 4, 6, 4, 8, 9, 6, 6, 6, 6, 2, 8, 1, 4, 0, 2, 6, 7, 2, 7, 5, 3, 2, 5, 0, 9, 6, 7, 1, 8, 4, 9, 9, 4, 7, 0
Offset: 0

Author

Neven Sajko, Jun 11 2019

Keywords

Examples

			0.6265275688128...
		

Programs

  • PARI
    suminf(n = 1, (sin(n) / 2)^n)

A308573 Decimal expansion of convergent series Sum_{n >= 1} (cos(n)/2)^n.

Original entry on oeis.org

2, 1, 6, 3, 5, 1, 4, 6, 7, 6, 0, 0, 3, 2, 5, 7, 8, 4, 2, 4, 2, 9, 5, 8, 1, 5, 3, 7, 4, 7, 2, 4, 8, 3, 0, 7, 5, 3, 3, 9, 8, 8, 9, 4, 6, 7, 9, 3, 6, 1, 7, 3, 8, 8, 2, 9, 3, 9, 4, 9, 4, 1, 7, 7, 7, 4, 6, 0, 1, 9, 9, 5, 3, 9, 2, 9, 5, 7, 0, 8, 0, 5, 2, 2, 1, 2, 9, 9, 9, 2, 7, 5, 5, 1, 7, 9, 9, 2, 0, 9, 5, 5, 7, 7, 9, 3, 1, 9, 9, 8, 1, 5, 8, 2, 9, 2, 1, 1, 7, 0
Offset: 0

Author

Neven Sajko, Jun 08 2019

Keywords

Examples

			0.2163514676003257842429581537472483...
		

Programs

  • PARI
    suminf(n = 1, (cos(n) / 2)^n) \\ Michel Marcus, Jun 08 2019