cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Benjamin Phillabaum

Benjamin Phillabaum's wiki page.

Benjamin Phillabaum has authored 2 sequences.

A187151 Number of walks of length n starting at origin and ending in first quadrant on a square lattice.

Original entry on oeis.org

1, 2, 8, 26, 108, 382, 1586, 5812, 24044, 89846, 370398, 1401292, 5759826, 21977516, 90111820, 345994216, 1415691244, 5461770406, 22308412934, 86392108636, 352334866238, 1368640564996, 5574504569620, 21708901408216, 88320660937298, 344680279929532, 1400902293406676
Offset: 0

Author

Benjamin Phillabaum, Mar 05 2011

Keywords

Examples

			a(2) = {UU,UR,UD,RU,RR,RL,DU,LR}.
		

Programs

  • Mathematica
    CoefficientList[Series[(Exp[2x]+BesselI[0,2x])^2/4,{x,0,15}],x] * Range[0,15]!
    Table[2^(-2 + n) (2^n + 2 Hypergeometric2F1[(1 - n)/2, -(n/2), 1, 1] + (2^n Gamma[(1 + n)/2]^2 Mod[n + 1, 2])/(Pi Gamma[1 + n/2]^2)), {n, 0, 30}] (* Benedict W. J. Irwin, Aug 02 2016 *)
  • PARI
    x='x+O('x^33);
    Vec(serlaplace((exp(2*x)+besseli(0,2*x))^2/4)) /* Joerg Arndt, Mar 06 2011 */

Formula

E.g.f.: (exp(2*x)+I_0(2*x))^2/4 where I() is the Modified Bessel Function. - Benjamin Phillabaum, Mar 05 2011
Recurrence: (n-1)*n^2*(8*n^3 - 66*n^2 + 171*n - 139)*a(n) = 2*(n-1)^2*(32*n^4 - 288*n^3 + 886*n^2 - 1071*n + 396)*a(n-1) + 24*(2*n-3)*(4*n^4 - 37*n^3 + 114*n^2 - 136*n + 50)*a(n-2) - 32*(n-2)^2*(32*n^4 - 288*n^3 + 886*n^2 - 1071*n + 396)*a(n-3) + 128*(n-3)^2*(2*n-7)*(8*n^3 - 42*n^2 + 63*n - 26)*a(n-4). - Vaclav Kotesovec, Feb 24 2014
a(n) ~ 4^(n-1) * (1 + 2/sqrt(Pi*n)). - Vaclav Kotesovec, Feb 24 2014
From Benedict W. J. Irwin, Aug 02 2016: (Start)
Let b(n) = 2^(2n-2)+2^(n-1)*2F1((1-n)/2,-n/2;1;1).
For odd n, a(n) = b(n),
for even n, a(n) = b(n) + 2^(2n-2)*Gamma((n+1)/2)^2/Gamma(1+n/2)^2/Pi. (End)

A186648 Number of walks f length n on a square lattice ending with x > 0 and y > 0.

Original entry on oeis.org

0, 0, 2, 6, 38, 130, 662, 2380, 11174, 41226, 185642, 695860, 3055670, 11576916, 49995220, 190876696, 814610854, 3128164186, 13233277634, 51046844836, 214488337418, 830382690556, 3470405605900, 13475470680616, 56073057254198, 218269673491780
Offset: 0

Author

Benjamin Phillabaum, Mar 06 2011

Keywords

Examples

			a(3) = 6 {UUR,URU,RUU,RRU,RUR,URR}. Note: you can also go Left or Down, however that appears at the fourth sequence which is too large to put in this space.
		

Crossrefs

Cf. A187151.

Programs

  • Mathematica
    Table[(CoefficientList[Series[(1/2 (E^(2 x) - (BesselI[0, 2 x])))^2, {x, 0, len}], x] Range[0, len]!)[[n + 1]], {n, 0, 25}]

Formula

E.g.f.: ((e^(2*x)-I_0(2*x))/2)^2. - Benjamin Phillabaum, Mar 06 2011
From Benedict W. J. Irwin, May 25 2016: (Start)
If n is even, a(n) = 2^(n-2)*(2^n - 2*2F1((1-n)/2,-n/2;1;1) + n!*Gamma((n+1)/2))/(sqrt(Pi)*Gamma(1 + n/2)^3),
If n is odd, a(n) = 2^(n-2)*(2^n - 2*2F1((1-n)/2,-n/2;1;1)).
(End)
D-finite with recurrence n^2*(n-1)*(75*n-313)*a(n) -2*(334*n^2-1857*n+2052)*(n-1)^2*a(n-1) +8*(68*n^4-1240*n^3+6749*n^2-13464*n+9090)*a(n-2) +32*(300*n^4-2626*n^3+7387*n^2-6699*n-297)*a(n-3) -128*(218*n^2-1444*n+2429)*(-3+n)^2*a(n-4) +512*(2*n-9)*(17*n-105)*(-4+n)^2*a(n-5)=0. - R. J. Mathar, Feb 08 2021