cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: William A. Tedeschi

William A. Tedeschi's wiki page.

William A. Tedeschi has authored 21 sequences. Here are the ten most recent ones:

A180446 Number of non-pentagonal numbers <= n.

Original entry on oeis.org

0, 0, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 63, 64, 65, 66
Offset: 0

Author

William A. Tedeschi, Sep 07 2010

Keywords

Examples

			a(5) = 5 - floor((sqrt(24*5+1)+1)/6) = 3.
		

Programs

  • Mathematica
    f[n_] := n - Floor[(Sqrt[24 n + 1] + 1)/6]; Array[f, 74, 0] (* Robert G. Wilson v, Sep 10 2010 *)
    Accumulate[Table[If[IntegerQ[(1+Sqrt[1+24n])/6],0,1],{n,0,80}]]-1 (* Harvey P. Dale, May 22 2023 *)
  • Python
    l = [n-floor((sqrt(24*n+1)+1)/6) for n in range(0,101)]
    
  • Python
    from math import isqrt
    def A180446(n): return n-(m:=isqrt((k:=n<<1)//3))-(k>m*(3*m+5)) # Chai Wah Wu, Nov 04 2024

Formula

a(n) = n - floor((sqrt(24n+1)+1)/6) = n - A180447(n).

Extensions

More terms from Robert G. Wilson v, Sep 10 2010

A180447 n appears 3n+1 times.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0

Author

William A. Tedeschi, Sep 07 2010

Keywords

Examples

			a(5) = floor((sqrt(24*5+1)+1)/6) = 2.
		

Crossrefs

Cf. A000326 (indices of run starts), A016655, A180446.

Programs

  • Mathematica
    f[n_] := Floor[(Sqrt[24 n + 1] + 1)/6]; Array[f, 105, 0] (* Robert G. Wilson v, Sep 10 2010 *)
  • PARI
    a(n) = (sqrtint(24*n+1)+1)\6; \\ Kevin Ryde, Apr 21 2021
  • Python
    l = [floor((sqrt(24*n+1)+1)/6) for n in range(0,101)]
    
  • Python
    from math import isqrt
    def A180447(n): return (m:=isqrt((k:=n<<1)//3))+(k>m*(3*m+5)) # Chai Wah Wu, Nov 04 2024
    

Formula

a(n) = floor((sqrt(24n+1)+1)/6).
a(n) = m+1 if 2n>m*(3m+5) and a(n) = m otherwise where m = floor(sqrt(2n/3)). For n>0, a(n) = k+1 if 2n>=(k+1)(3k+2) and a(n) = k otherwise where k = floor(sqrt(2(n-1)/3)). - Chai Wah Wu, Nov 04 2024
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/2 (= A016655 / 10). - Amiram Eldar, Jun 30 2025

Extensions

More terms from Robert G. Wilson v, Sep 10 2010

A180448 Primes of the form floor(k^sqrt(2)).

Original entry on oeis.org

2, 7, 29, 37, 41, 59, 79, 89, 197, 281, 311, 431, 491, 571, 607, 617, 673, 683, 751, 997, 1019, 1051, 1117, 1217, 1229, 1297, 1321, 1367, 1571, 1583, 1607, 1657, 1669, 1871, 1949, 2309, 2447, 2503, 2531, 2687, 2903, 3413, 3613, 3739, 3881, 3929, 4057, 4073, 4219
Offset: 1

Author

William A. Tedeschi, Sep 07 2010

Keywords

Programs

  • Mathematica
    Select[Floor[Range[0,500]^Sqrt[2]],PrimeQ] (* Harvey P. Dale, May 20 2011 *)
  • PARI
    for(n=1, 154392, if(ispseudoprime(t=floor(n^sqrt(2))), print1(t", "))); v \\ Charles R Greathouse IV, Feb 18 2011

Formula

A134886 INTERSECT A000040.

Extensions

Formula rewritten by R. J. Mathar, Sep 09 2010

A180449 Primes of the form floor( (k*(sqrt(3)*k-1))/sqrt(2) ).

Original entry on oeis.org

3, 167, 197, 577, 631, 809, 1009, 1231, 1741, 1931, 2029, 2339, 3533, 4079, 7207, 10301, 11933, 14741, 17551, 18743, 24943, 26003, 32027, 37813, 42239, 45013, 49831, 51827, 54377, 61843, 76369, 81973, 122849, 128339, 130729, 145531, 154097, 171047, 172883
Offset: 1

Author

William A. Tedeschi, Sep 07 2010, typo in definition corrected Sep 09 2010

Keywords

Programs

  • Mathematica
    Select[With[{c3=Sqrt[3],c2=Sqrt[2]},Table[Floor[n (c3 n-1)/c2], {n,500}]],PrimeQ] (* Harvey P. Dale, May 05 2011 *)
  • PARI
    for(n=1, 1e4, if(ispseudoprime(t=floor((n*(sqrt(3)*n-1))/sqrt(2))), print1(t", "))); v \\ Charles R Greathouse IV, Feb 18 2011

A180450 Primes of the form floor( (k^sqrt(2) + k)/sqrt(2) ).

Original entry on oeis.org

3, 5, 7, 13, 19, 43, 67, 71, 89, 103, 107, 127, 137, 163, 191, 311, 317, 337, 383, 397, 431, 547, 569, 577, 599, 607, 653, 661, 677, 701, 709, 733, 757, 823, 857, 977, 1021, 1039, 1129, 1193, 1249, 1277, 1381, 1459, 1699, 1709, 1823, 1949, 2099, 2131, 2153, 2521, 2647
Offset: 1

Author

William A. Tedeschi, Sep 07 2010

Keywords

Comments

Intersection of A000040 with the sequence 1, 3, 5, 7, 10, 13, 16, 19, 22, 25, 28, 32, 35, ... defined by the floor function.

Programs

  • Maple
    select(isprime,[seq(floor((n^sqrt(2)+n)/sqrt(2)),n=1..350)]); # Muniru A Asiru, Sep 29 2018
  • Mathematica
    Select[With[{b = Sqrt[2]}, Table[Floor[(n^b + n)/b], {n, 500}]], PrimeQ] (* G. C. Greubel, Sep 29 2018 *)
  • PARI
    for(n=1, 148438, if(ispseudoprime(t=floor((n^sqrt(2)+n)/sqrt(2))), print1(t", "))); v \\ Charles R Greathouse IV, Feb 18 2011

Extensions

Formula replaced by a comment - R. J. Mathar, Sep 09 2010

A180451 Primes of the form floor(2*k^sqrt(2) - k).

Original entry on oeis.org

3, 19, 29, 41, 101, 109, 127, 281, 293, 353, 509, 523, 743, 821, 853, 919, 1019, 1193, 1229, 1283, 1301, 2503, 2683, 2797, 2843, 3221, 3637, 3863, 4093, 4327, 4889, 4943, 5897, 6451, 6481, 6659, 6689, 6719, 6779, 6869, 6899, 7541, 7603, 7759, 7853, 8423
Offset: 1

Author

William A. Tedeschi, Sep 07 2010

Keywords

Programs

  • Mathematica
    Select[Table[Floor[2n^Sqrt[2] -n],{n,1000}],PrimeQ] (* Harvey P. Dale, Jun 23 2013 *)
  • PARI
    for(n=1, 1e4, if(ispseudoprime(t=floor(2*n^sqrt(2)-n)), print1(t", "))); v \\ Charles R Greathouse IV, Feb 18 2011

Extensions

Sequence renamed by R. J. Mathar, Sep 09 2010

A180452 Primes of the form floor(k^sqrt(Pi)).

Original entry on oeis.org

3, 7, 11, 17, 23, 31, 59, 107, 151, 167, 239, 367, 439, 491, 601, 631, 691, 919, 1063, 2309, 2909, 3083, 3823, 4019, 4219, 4423, 5431, 5507, 5659, 5813, 6047, 7451, 9551, 10037, 10837, 10939, 14071, 16673, 17291, 19073, 19993, 21067, 21613, 25163
Offset: 1

Author

William A. Tedeschi, Sep 07 2010

Keywords

Crossrefs

A134707 INTERSECT A000040.

Programs

  • Mathematica
    Select[Floor[Range[350]^Sqrt[Pi]],PrimeQ] (* Harvey P. Dale, Apr 23 2022 *)
  • PARI
    for(n=1, 1e4, if(ispseudoprime(t=floor(n^sqrt(Pi))), print1(t", "))); v \\ Charles R Greathouse IV, Feb 18 2011

Extensions

Formula rewritten by R. J. Mathar, Sep 09 2010

A137936 a(n) = 5*mod(n,5) + floor(n/5).

Original entry on oeis.org

0, 5, 10, 15, 20, 1, 6, 11, 16, 21, 2, 7, 12, 17, 22, 3, 8, 13, 18, 23, 4, 9, 14, 19, 24, 5, 10, 15, 20, 25, 6, 11, 16, 21, 26, 7, 12, 17, 22, 27, 8, 13, 18, 23, 28, 9, 14, 19, 24, 29, 10, 15, 20, 25, 30, 11, 16, 21, 26, 31, 12, 17, 22, 27, 32, 13, 18, 23, 28, 33, 14, 19, 24, 29, 34
Offset: 0

Author

William A. Tedeschi, Mar 06 2008

Keywords

Examples

			a(0) = 5*mod(0,5) + floor(0/5) = 0
a(3) = 5*mod(3,5) + floor(3/5) = 15
		

Crossrefs

Programs

  • Python
    a = lambda n: 5*(n%5) + floor(n/5)

Formula

a(n) = 5*mod(n,5) + floor(n/5) = 5*A010874(n) + A002266(n)
O.g.f.: -x(-5x^3+19x^4-5x^2-5x-5)/[(-1+x)^2*(x^3+x^4+x^2+x+1)] . - R. J. Mathar, Mar 07 2008

A137797 a(n) = 2*( (n+1) mod 5 ) - 2*( (n+1) mod 2 ).

Original entry on oeis.org

0, 4, 4, 8, -2, 2, 2, 6, 6, 0, 0, 4, 4, 8, -2, 2, 2, 6, 6, 0, 0, 4, 4, 8, -2, 2, 2, 6, 6, 0, 0, 4, 4, 8, -2, 2, 2, 6, 6, 0, 0, 4, 4, 8, -2, 2, 2, 6, 6, 0, 0, 4, 4, 8, -2, 2, 2, 6, 6, 0, 0, 4, 4, 8, -2, 2, 2, 6, 6, 0, 0, 4, 4, 8, -2, 2, 2, 6, 6
Offset: 0

Author

William A. Tedeschi, Feb 10 2008

Keywords

Comments

The sequence is periodic with period 10. - Colin Barker, Dec 16 2014

Examples

			a(2) = 2*((2+1) mod 5) - 2*((2+1) mod 2) = 2*(3 mod 5) - 2*(3 mod 2) = 4.
		

Crossrefs

Suggested by A010700. Used in A137798.

Programs

  • Mathematica
    LinearRecurrence[{-1,0,0,0,1,1},{0,4,4,8,-2,2},100] (* Harvey P. Dale, Jun 08 2015 *)
  • PARI
    concat(0, Vec(-2*x*(3*x^3+6*x^2+4*x+2)/((x-1)*(x+1)*(x^4+x^3+x^2+x+1)) + O(x^100))) \\ Colin Barker, Dec 16 2014

Formula

a(n) = -a(n-1)+a(n-5)+a(n-6) for n>5. - Colin Barker, Dec 16 2014
G.f.: -2*x*(3*x^3+6*x^2+4*x+2) / ((x-1)*(x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Dec 16 2014

A137935 a(n) = 5n + 26*floor(n/5).

Original entry on oeis.org

0, 5, 10, 15, 20, 51, 56, 61, 66, 71, 102, 107, 112, 117, 122, 153, 158, 163, 168, 173, 204, 209, 214, 219, 224, 255, 260, 265, 270, 275, 306, 311, 316, 321, 326, 357, 362, 367, 372, 377, 408, 413, 418, 423, 428, 459, 464, 469, 474, 479, 510, 515, 520, 525, 530, 561, 566
Offset: 0

Author

William A. Tedeschi, Mar 06 2008

Keywords

Examples

			a(0) = 5(0) + 26*floor(0/5) = 0
a(3) = 5(3) + 26*floor(3/5) = 15
		

Crossrefs

Cf. A002266.

Programs

  • Maple
    seq(5*n + 26*floor(n/5), n=0..200); # Robert Israel, Apr 02 2017
  • Python
    a = lambda n: 5*n + 26*floor(n/5)

Formula

a(n) = 5n + 26*floor(n/5) = 5n + 26*A002266(n)
G.f.: (5*x+5*x^2+5*x^3+5*x^4+31*x^5)/(1-x-x^5+x^6). - Robert Israel, Apr 02 2017