A329941 Least prime, p, such that 2*p*3^n - 1 and 2*p*3^n + 1 are twin primes.
2, 11, 2, 5, 43, 29, 53, 311, 113, 109, 367, 859, 647, 11, 2, 619, 13, 1051, 157, 2801, 3767, 5, 337, 1721, 3517, 41, 4013, 1879, 1873, 13649, 4637, 2909, 8387, 6521, 1453, 6599, 1277, 4801, 167, 1031, 11213, 4129, 4933, 199, 1427, 859, 9227, 5581, 863, 11959, 10453
Offset: 1
Keywords
Examples
2*2*3^1 - 1 = 11; 11 and 13 are twin primes so a(1)=2. 2*11*3^2 - 1 = 197; 197 and 199 are twin primes so a(2)=11 as no other prime p < 11 gives twin primes.
Crossrefs
Cf. A130327.
Programs
-
Mathematica
Array[Block[{p = 2}, While[! AllTrue[2 p 3^# + {-1, 1}, PrimeQ], p = NextPrime@ p]; p] &, 51] (* Michael De Vlieger, Dec 24 2019 *)
-
PARI
a(n) = {my(p=2); while (!isprime(2*p*3^n - 1) || !isprime(2*p*3^n + 1), p = nextprime(p+1)); p;} \\ Michel Marcus, Nov 25 2019
Comments