A363686 Irregular triangle T(n, k) read by rows which represents a predecessor number system for Collatz sequences (see Comments for precise definition).
5, 3, 17, 23, 25, 11, 65, 15, 73, 59, 33, 7, 185, 43, 257, 95, 105, 219, 97, 39, 249, 363, 385, 175, 9, 123, 929, 199, 57, 171, 1025, 63, 297, 411, 481, 487, 633, 747, 129, 367, 393, 507, 1697, 583, 1849, 939, 513, 287, 233, 347, 1377, 423, 1529, 619, 3969, 815, 265, 1403, 1441, 1479, 1593, 683, 4097
Offset: 1
Examples
Triangle begins: 5; 3, 17; 23, 25, 11, 65; 15, 73, 59, 33, 7, 185, 43, 257; 95, 105, 219, 97, 39, 249, 363, 385, 175, 9, 123, 929, 199, 57, 171, 1025; ... For n = 2, T(2, 1) = 3 because 3 is an odd Collatz-predecessor of 5.
Links
- Andrä Knispel, Table of n, a(n) for n = 1..127
- Eric Weisstein's World of Mathematics, Collatz Problem
- Wikipedia, Collatz conjecture
- Index entries for sequences related to 3x+1 (or Collatz) problem
- Wikipedia, Notizen zu Collatzfolgen
Crossrefs
Programs
-
MATLAB
function a = A363686( max_n ) a = 5; r = 8; for n = 2:max_n nh = floor(n/2); e = 2^(1 + mod(n, 2)); k = a(nh); if mod((k*e-1), 3) == 0 k = (k*e-1)/3; else k = k + r(nh); while mod((k*e-1), 3) ~= 0 k = k + r(nh); end k = (k*e-1)/3; end r(n) = r(nh)*e; a(n) = k; end end % Thomas Scheuerle, Jun 23 2023
-
PARI
A056792(n)=n=binary(n); sum(i=1, #n, n[i])+#n-1; a(n)=if(n==1, return(5), for(x=0, 2, my(k=a(floor(n/2))+x*2^(A056792(floor(n/2))+2)); if((k*2^(1+(n%2))-1)%3==0, return((k*2^(1+(n%2))-1)/3)))) \\ Thomas Scheuerle, Jun 23 2023
Formula
For n > 1 holds: (3*a(n) + 1)/2^(1 + mod(n,2)) - a(floor(n/2)) = r*2^(A056792(floor(n/2)) + 2) with for r the least integer from the set {0, 1, 2}. - Thomas Scheuerle, Jun 23 2023
Conjecture: Every odd number > 1 is congruent to a(k) mod 2^(A056792(floor(k/2)) for some k.
Comments