A289780 p-INVERT of the positive integers (A000027), where p(S) = 1 - S - S^2.
1, 4, 14, 47, 156, 517, 1714, 5684, 18851, 62520, 207349, 687676, 2280686, 7563923, 25085844, 83197513, 275925586, 915110636, 3034975799, 10065534960, 33382471801, 110713382644, 367182309614, 1217764693607, 4038731742156, 13394504020957, 44423039068114
Offset: 0
Examples
Example 1: s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S. S(x) = x + 2x^2 + 3x^3 + 4x^4 + ... p(S(x)) = 1 - (x + 2x^2 + 3x^3 + 4x^4 + ... ) - p(0) + 1/p(S(x)) = -1 + 1 + x + 3x^2 + 8x^3 + 21x^4 + ... T(x) = 1 + 3x + 8x^2 + 21x^3 + ... t(s) = (1,3,8,21,...) = A001906. *** Example 2: s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S - S^2. S(x) = x + 2x^2 + 3x^3 + 4x^4 + ... p(S(x)) = 1 - ( x + 2x^2 + 3x^3 + 4x^4 + ...) - ( x + 2x^2 + 3x^3 + 4x^4 + ...)^2 - p(0) + 1/p(S(x)) = -1 + 1 + x + 4x^2 + 14x^3 + 47x^4 + ... T(x) = 1 + 4x + 14x^2 + 47x^3 + ... t(s) = (1,4,14,47,...) = A289780.
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5, -7, 5, -1)
Crossrefs
Cf. A000027.
Programs
-
GAP
P:=[1,4,14,47];; for n in [5..10^2] do P[n]:=5*P[n-1]-7*P[n-2]+5*P[n-3]-P[n-4]; od; P; # Muniru A Asiru, Sep 03 2017
-
Mathematica
z = 60; s = x/(1 - x)^2; p = 1 - s - s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289780 *)
-
PARI
x='x+O('x^99); Vec((1-x+x^2)/(1-5*x+7*x^2-5*x^3+x^4)) \\ Altug Alkan, Aug 13 2017
Formula
G.f.: (1 - x + x^2)/(1 - 5 x + 7 x^2 - 5 x^3 + x^4).
a(n) = 5*a(n-1) - 7*a(n-2) + 5*a(n-3) - a(n-4).
Comments