cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A192316 G.f.: A(x) = Sum_{n>=0} x^n * (1+x)^A038722(n), where A038722(n) = floor(sqrt(2*n)+1/2)^2 - n + 1.

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 21, 35, 42, 70, 168, 330, 471, 561, 855, 1950, 4402, 8023, 11616, 14245, 18425, 33880, 78519, 172047, 320451, 500579, 668582, 819819, 1113658, 2046760, 4599060, 10174544, 20102845, 34677986, 52310993, 70115066, 87683799, 115847016
Offset: 0

Views

Author

Paul D. Hanna, Jun 27 2011

Keywords

Comments

A038722 is a self-inverse permutation of the natural numbers. Thus, the function defined by g(x,y) = Sum_{n>=0} x^n * y^A038722(n) is symmetric: g(x,y) = g(y,x).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 6*x^4 + 9*x^5 + 21*x^6 +...
which satisfies:
A(x) = 1 + x*(1+x) + x^2*(1+x)^3 + x^3*(1+x)^2 + x^4*(1+x)^6 + x^5*(1+x)^5 + x^6*(1+x)^4 +...
A(x) = 1 + (x+x^2) + (x+x^2)^2*((1+x)^2-x^2) + (x+x^2)^4*((1+x)^3-x^3) + (x+x^2)^7*((1+x)^4-x^4) + (x+x^2)^11*((1+x)^5-x^5) +...
Sequence A038722 begins:
[1, 3,2, 6,5,4, 10,9,8,7, 15,14,13,12,11, 21,20,19,18,17,16, 28,27,...].
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(1+sum(m=1,sqrtint(2*n)+2,(x+x^2+x*O(x^n))^(m*(m-1)/2+1)*((1+x)^m-x^m)),n)}
    
  • PARI
    {A038722(n)=local(t=floor(1/2+sqrt(2*n))); if(n<1, 0, t^2-n+1)}
    {a(n)=local(A=1+x);A=sum(m=0,n,x^m*(1+x+x*O(x^n))^A038722(m));polcoeff(A,n)}

Formula

G.f.: A(x) = 1 + Sum_{n>=1} (x+x^2)^(n*(n-1)/2+1) * ((1+x)^n - x^n).
G.f.: A(x) = Sum_{n>=0} x^A038722(n) * (1+x)^n.

A192317 G.f.: A(x) = Sum_{n>=0} x^n/(1-x)^A038722(n), where A038722(n) = floor(sqrt(2*n)+1/2)^2 - n + 1.

Original entry on oeis.org

1, 1, 2, 5, 10, 21, 47, 103, 217, 451, 951, 2047, 4439, 9548, 20231, 42355, 88373, 185343, 392297, 836502, 1787158, 3803651, 8035998, 16846041, 35121641, 73103052, 152493454, 319600236, 673256721, 1423293503, 3011396839, 6358756643, 13372146841
Offset: 0

Views

Author

Paul D. Hanna, Jun 27 2011

Keywords

Comments

A038722 is a self-inverse permutation of the natural numbers. Thus, the function defined by g(x,y) = Sum_{n>=0} x^n * y^A038722(n) is symmetric: g(x,y) = g(y,x).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 21*x^5 + 47*x^6 +...
which satisfies:
A(x) = 1 + x/(1-x) + x^2/(1-x)^3 + x^3/(1-x)^2 + x^4/(1-x)^6 + x^5/(1-x)^5 + x^6*(1+x)^4 +...
A(x) = 1 + (x/(1-x)) + (x/(1-x))^2*(1/(1-x)^2-x^2)/(1/(1-x)-x) + (x/(1-x))^4*(1/(1-x)^3-x^3)/(1/(1-x)-x) + (x/(1-x))^7*(1/(1-x)^4-x^4)/(1/(1-x)-x) + (x/(1-x))^11*(1/(1-x)^5-x^5)/(1/(1-x)-x) +...
Sequence A038722 begins:
[1, 3,2, 6,5,4, 10,9,8,7, 15,14,13,12,11, 21,20,19,18,17,16, 28,27,...].
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(1+sum(m=1,sqrtint(2*n)+2,(x/(1-x+x*O(x^n)))^(m*(m-1)/2+1)/(1-x)^(m-1)*(1-x^m*(1-x)^m)/(1-x*(1-x))),n)}
    
  • PARI
    {A038722(n)=local(t=floor(1/2+sqrt(2*n))); if(n<1, 0, t^2-n+1)}
    {a(n)=local(A=1+x);A=sum(m=0,n,x^m/(1-x+x*O(x^n))^A038722(m));polcoeff(A,n)}

Formula

G.f.: A(x) = 1 + Sum_{n>=1} (x/(1-x))^(n*(n-1)/2+1) * (1/(1-x)^n - x^n)/(1/(1-x) - x).
G.f.: A(x) = Sum_{n>=0} x^A038722(n)/(1-x)^n.

A144113 Weight array W={w(i,j)} of the natural number array A038722.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 4, 1, 1, 3, 5, 1, 1, 1, 4, 6, 1, 1, 1, 1, 5, 7, 1, 1, 1, 1, 1, 6, 8, 1, 1, 1, 1, 1, 1, 7, 9, 1, 1, 1, 1, 1, 1, 1, 8, 10, 1, 1, 1, 1, 1, 1, 1, 1, 9, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Sep 11 2008

Keywords

Comments

In general, let w(i,j) be the weight of the unit square labeled by its northeast vertex (i,j) and for each (m,n), define S(m,n) = Sum_{i=1..m} Sum_{j=1..n} w(i,j).
Then S(m,n) is the weight of the rectangle [0,m]x[0,n]. We call W the weight array of S and we call S the accumulation array of W. For the case at hand, S is the array of natural numbers having the following antidiagonals: (1), then (3,2), then (6,5,4), then (10,9,8,7) and so on.

Examples

			S(2,4)=1+1+2+3+2+1+1+1=14.
		

Crossrefs

Formula

row 1: A000027
row n: n-1 followed by A000012, for n>1.

A192318 G.f. A(x) satisfies A(x) = Sum_{n>=0} x^n * A(x)^A038722(n), where A038722(n) = floor(sqrt(2*n)+1/2)^2 - n + 1.

Original entry on oeis.org

1, 1, 2, 6, 18, 61, 218, 804, 3052, 11831, 46646, 186487, 754177, 3079767, 12681568, 52595999, 219515014, 921264092, 3885468897, 16459470468, 70001813240, 298785285316, 1279450906737, 5495145204550, 23665623371950, 102175095587827
Offset: 0

Views

Author

Paul D. Hanna, Jun 27 2011

Keywords

Comments

A038722 is a self-inverse permutation of the natural numbers. Thus, the function defined by g(x,y) = Sum_{n>=0} x^n*y^A038722(n) is symmetric: g(x,y) = g(y,x). What are the properties of a function A(x) that satisfies: A(x) = g(x,A(x)) = g(A(x),x)?

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 18*x^4 + 61*x^5 + 218*x^6 + 804*x^7 +...
which satisfies:
A(x) = 1 + x*A(x) + x^2*A(x)^3 + x^3*A(x)^2 + x^4*A(x)^6 + x^5*A(x)^5 + x^6*A(x)^4 +...
A(x) = 1 + x*A(x) + x^2*A(x)^2*(A(x)^2-x^2)/(A(x)-x) + x^4*A(x)^4*(A(x)^3-x^3)/(A(x)-x) + x^7*A(x)^7*(A(x)^4-x^4)/(A(x)-x) + x^11*A(x)^11*(A(x)^5-x^5)/(A(x)-x) +...
Sequence A038722 begins:
[1, 3,2, 6,5,4, 10,9,8,7, 15,14,13,12,11, 21,20,19,18,17,16, 28,27,...].
		

Crossrefs

Cf. A038722.

Programs

  • PARI
    {b(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,sqrtint(2*n)+2,(x*A+x*O(x^n))^(m*(m-1)/2+1)*(A^m-x^m)/(A-x)));polcoeff(A,n)}
    
  • PARI
    {A038722(n)=local(t=floor(1/2+sqrt(2*n))); if(n<1, 0, t^2-n+1)}
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,x^m*(A+x*O(x^n))^A038722(m)));polcoeff(A,n)}

Formula

G.f. satisfies: A(x) = 1 + Sum_{n>=1} (x*A(x))^(n*(n-1)/2+1) * (A(x)^n - x^n)/(A(x)-x).
G.f. satisfies: A(x) = Sum_{n>=0} x^A038722(n) * A(x)^n.

A000027 The positive integers. Also called the natural numbers, the whole numbers or the counting numbers, but these terms are ambiguous.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Keywords

Comments

For some authors, the terms "natural numbers" and "counting numbers" include 0, i.e., refer to the nonnegative integers A001477; the term "whole numbers" frequently also designates the whole set of (signed) integers A001057.
a(n) is smallest positive integer which is consistent with sequence being monotonically increasing and satisfying a(a(n)) = n (cf. A007378).
Inverse Euler transform of A000219.
The rectangular array having A000027 as antidiagonals is the dispersion of the complement of the triangular numbers, A000217 (which triangularly form column 1 of this array). The array is also the transpose of A038722. - Clark Kimberling, Apr 05 2003
For nonzero x, define f(n) = floor(nx) - floor(n/x). Then f=A000027 if and only if x=tau or x=-tau. - Clark Kimberling, Jan 09 2005
Numbers of form (2^i)*k for odd k (i.e., n = A006519(n)*A000265(n)); thus n corresponds uniquely to an ordered pair (i,k) where i=A007814, k=A000265 (with A007814(2n)=A001511(n), A007814(2n+1)=0). - Lekraj Beedassy, Apr 22 2006
If the offset were changed to 0, we would have the following pattern: a(n)=binomial(n,0) + binomial(n,1) for the present sequence (number of regions in 1-space defined by n points), A000124 (number of regions in 2-space defined by n straight lines), A000125 (number of regions in 3-space defined by n planes), A000127 (number of regions in 4-space defined by n hyperplanes), A006261, A008859, A008860, A008861, A008862 and A008863, where the last six sequences are interpreted analogously and in each "... by n ..." clause an offset of 0 has been assumed, resulting in a(0)=1 for all of them, which corresponds to the case of not cutting with a hyperplane at all and therefore having one region. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
Define a number of points on a straight line to be in general arrangement when no two points coincide. Then these are the numbers of regions defined by n points in general arrangement on a straight line, when an offset of 0 is assumed. For instance, a(0)=1, since using no point at all leaves one region. The sequence satisfies the recursion a(n) = a(n-1) + 1. This has the following geometrical interpretation: Suppose there are already n-1 points in general arrangement, thus defining the maximal number of regions on a straight line obtainable by n-1 points, and now one more point is added in general arrangement. Then it will coincide with no other point and act as a dividing wall thereby creating one new region in addition to the a(n-1)=(n-1)+1=n regions already there, hence a(n)=a(n-1)+1. Cf. the comments on A000124 for an analogous interpretation. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
The sequence a(n)=n (for n=1,2,3) and a(n)=n+1 (for n=4,5,...) gives to the rank (minimal cardinality of a generating set) for the semigroup I_n\S_n, where I_n and S_n denote the symmetric inverse semigroup and symmetric group on [n]. - James East, May 03 2007
The sequence a(n)=n (for n=1,2), a(n)=n+1 (for n=3) and a(n)=n+2 (for n=4,5,...) gives the rank (minimal cardinality of a generating set) for the semigroup PT_n\T_n, where PT_n and T_n denote the partial transformation semigroup and transformation semigroup on [n]. - James East, May 03 2007
"God made the integers; all else is the work of man." This famous quotation is a translation of "Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk," spoken by Leopold Kronecker in a lecture at the Berliner Naturforscher-Versammlung in 1886. Possibly the first publication of the statement is in Heinrich Weber's "Leopold Kronecker," Jahresberichte D.M.V. 2 (1893) 5-31. - Clark Kimberling, Jul 07 2007
Binomial transform of A019590, inverse binomial transform of A001792. - Philippe Deléham, Oct 24 2007
Writing A000027 as N, perhaps the simplest one-to-one correspondence between N X N and N is this: f(m,n) = ((m+n)^2 - m - 3n + 2)/2. Its inverse is given by I(k)=(g,h), where g = k - J(J-1)/2, h = J + 1 - g, J = floor((1 + sqrt(8k - 7))/2). Thus I(1)=(1,1), I(2)=(1,2), I(3)=(2,1) and so on; the mapping I fills the first-quadrant lattice by successive antidiagonals. - Clark Kimberling, Sep 11 2008
a(n) is also the mean of the first n odd integers. - Ian Kent, Dec 23 2008
Equals INVERTi transform of A001906, the even-indexed Fibonacci numbers starting (1, 3, 8, 21, 55, ...). - Gary W. Adamson, Jun 05 2009
These are also the 2-rough numbers: positive integers that have no prime factors less than 2. - Michael B. Porter, Oct 08 2009
Totally multiplicative sequence with a(p) = p for prime p. Totally multiplicative sequence with a(p) = a(p-1) + 1 for prime p. - Jaroslav Krizek, Oct 18 2009
Triangle T(k,j) of natural numbers, read by rows, with T(k,j) = binomial(k,2) + j = (k^2-k)/2 + j where 1 <= j <= k. In other words, a(n) = n = binomial(k,2) + j where k is the largest integer such that binomial(k,2) < n and j = n - binomial(k,2). For example, T(4,1)=7, T(4,2)=8, T(4,3)=9, and T(4,4)=10. Note that T(n,n)=A000217(n), the n-th triangular number. - Dennis P. Walsh, Nov 19 2009
Hofstadter-Conway-like sequence (see A004001): a(n) = a(a(n-1)) + a(n-a(n-1)) with a(1) = 1, a(2) = 2. - Jaroslav Krizek, Dec 11 2009
a(n) is also the dimension of the irreducible representations of the Lie algebra sl(2). - Leonid Bedratyuk, Jan 04 2010
Floyd's triangle read by rows. - Paul Muljadi, Jan 25 2010
Number of numbers between k and 2k where k is an integer. - Giovanni Teofilatto, Mar 26 2010
Generated from a(2n) = r*a(n), a(2n+1) = a(n) + a(n+1), r = 2; in an infinite set, row 2 of the array shown in A178568. - Gary W. Adamson, May 29 2010
1/n = continued fraction [n]. Let barover[n] = [n,n,n,...] = 1/k. Then k - 1/k = n. Example: [2,2,2,...] = (sqrt(2) - 1) = 1/k, with k = (sqrt(2) + 1). Then 2 = k - 1/k. - Gary W. Adamson, Jul 15 2010
Number of n-digit numbers the binary expansion of which contains one run of 1's. - Vladimir Shevelev, Jul 30 2010
From Clark Kimberling, Jan 29 2011: (Start)
Let T denote the "natural number array A000027":
1 2 4 7 ...
3 5 8 12 ...
6 9 13 18 ...
10 14 19 25 ...
T(n,k) = n+(n+k-2)*(n+k-1)/2. See A185787 for a list of sequences based on T, such as rows, columns, diagonals, and sub-arrays. (End)
The Stern polynomial B(n,x) evaluated at x=2. See A125184. - T. D. Noe, Feb 28 2011
The denominator in the Maclaurin series of log(2), which is 1 - 1/2 + 1/3 - 1/4 + .... - Mohammad K. Azarian, Oct 13 2011
As a function of Bernoulli numbers B_n (cf. A027641: (1, -1/2, 1/6, 0, -1/30, 0, 1/42, ...)): let V = a variant of B_n changing the (-1/2) to (1/2). Then triangle A074909 (the beheaded Pascal's triangle) * [1, 1/2, 1/6, 0, -1/30, ...] = the vector [1, 2, 3, 4, 5, ...]. - Gary W. Adamson, Mar 05 2012
Number of partitions of 2n+1 into exactly two parts. - Wesley Ivan Hurt, Jul 15 2013
Integers n dividing u(n) = 2u(n-1) - u(n-2); u(0)=0, u(1)=1 (Lucas sequence A001477). - Thomas M. Bridge, Nov 03 2013
For this sequence, the generalized continued fraction a(1)+a(1)/(a(2)+a(2)/(a(3)+a(3)/(a(4)+...))), evaluates to 1/(e-2) = A194807. - Stanislav Sykora, Jan 20 2014
Engel expansion of e-1 (A091131 = 1.71828...). - Jaroslav Krizek, Jan 23 2014
a(n) is the number of permutations of length n simultaneously avoiding 213, 231 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
a(n) is also the number of permutations simultaneously avoiding 213, 231 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl, Aug 07 2014
a(n) = least k such that 2*Pi - Sum_{h=1..k} 1/(h^2 - h + 3/16) < 1/n. - Clark Kimberling, Sep 28 2014
a(n) = least k such that Pi^2/6 - Sum_{h=1..k} 1/h^2 < 1/n. - Clark Kimberling, Oct 02 2014
Determinants of the spiral knots S(2,k,(1)). a(k) = det(S(2,k,(1))). These knots are also the torus knots T(2,k). - Ryan Stees, Dec 15 2014
As a function, the restriction of the identity map on the nonnegative integers {0,1,2,3...}, A001477, to the positive integers {1,2,3,...}. - M. F. Hasler, Jan 18 2015
See also A131685(k) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^k+ k) / k! takes integral values for all i>=0: For k=1, A131685(k)=1, which implies that this is a well defined integer sequence. - Alexander R. Povolotsky, Apr 24 2015
a(n) is the number of compositions of n+2 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
Does not satisfy Benford's law [Berger-Hill, 2017] - N. J. A. Sloane, Feb 07 2017
Parametrization for the finite multisubsets of the positive integers, where, for p_j the j-th prime, n = Product_{j} p_j^(e_j) corresponds to the multiset containing e_j copies of j ('Heinz encoding' -- see A056239, A003963, A289506, A289507, A289508, A289509). - Christopher J. Smyth, Jul 31 2017
The arithmetic function v_1(n,1) as defined in A289197. - Robert Price, Aug 22 2017
For n >= 3, a(n)=n is the least area that can be obtained for an irregular octagon drawn in a square of n units side, whose sides are parallel to the axes, with 4 vertices that coincide with the 4 vertices of the square, and the 4 remaining vertices having integer coordinates. See Affaire de Logique link. - Michel Marcus, Apr 28 2018
a(n+1) is the order of rowmotion on a poset defined by a disjoint union of chains of length n. - Nick Mayers, Jun 08 2018
Number of 1's in n-th generation of 1-D Cellular Automata using Rules 50, 58, 114, 122, 178, 186, 206, 220, 238, 242, 250 or 252 in the Wolfram numbering scheme, started with a single 1. - Frank Hollstein, Mar 25 2019
(1, 2, 3, 4, 5, ...) is the fourth INVERT transform of (1, -2, 3, -4, 5, ...). - Gary W. Adamson, Jul 15 2019

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 1.
  • T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 25.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 22.
  • W. Fulton and J. Harris, Representation theory: a first course, (1991), page 149. [From Leonid Bedratyuk, Jan 04 2010]
  • I. S. Gradstein and I. M. Ryshik, Tables of series, products, and integrals, Volume 1, Verlag Harri Deutsch, 1981.
  • R. E. Schwartz, You Can Count on Monsters: The First 100 numbers and Their Characters, A. K. Peters and MAA, 2010.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A001477 = nonnegative numbers.
Partial sums of A000012.
Cf. A026081 = integers in reverse alphabetical order in U.S. English, A107322 = English name for number and its reverse have the same number of letters, A119796 = zero through ten in alphabetical order of English reverse spelling, A005589, etc. Cf. A185787 (includes a list of sequences based on the natural number array A000027).
Cf. Boustrophedon transforms: A000737, A231179;
Cf. A038722 (mirrored when seen as triangle), A056011 (boustrophedon).
Cf. A048993, A048994, A000110 (see the Feb 03 2015 formula).

Programs

Formula

a(2k+1) = A005408(k), k >= 0, a(2k) = A005843(k), k >= 1.
Multiplicative with a(p^e) = p^e. - David W. Wilson, Aug 01 2001
Another g.f.: Sum_{n>0} phi(n)*x^n/(1-x^n) (Apostol).
When seen as an array: T(k, n) = n+1 + (k+n)*(k+n+1)/2. Main diagonal is 2n*(n+1)+1 (A001844), antidiagonal sums are n*(n^2+1)/2 (A006003). - Ralf Stephan, Oct 17 2004
Dirichlet generating function: zeta(s-1). - Franklin T. Adams-Watters, Sep 11 2005
G.f.: x/(1-x)^2. E.g.f.: x*exp(x). a(n)=n. a(-n)=-a(n).
Series reversion of g.f. A(x) is x*C(-x)^2 where C(x) is the g.f. of A000108. - Michael Somos, Sep 04 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 4*u*v. - Michael Somos, Oct 03 2006
Convolution of A000012 (the all-ones sequence) with itself. - Tanya Khovanova, Jun 22 2007
a(n) = 2*a(n-1)-a(n-2); a(1)=1, a(2)=2. a(n) = 1+a(n-1). - Philippe Deléham, Nov 03 2008
a(n) = A000720(A000040(n)). - Juri-Stepan Gerasimov, Nov 29 2009
a(n+1) = Sum_{k=0..n} A101950(n,k). - Philippe Deléham, Feb 10 2012
a(n) = Sum_{d | n} phi(d) = Sum_{d | n} A000010(d). - Jaroslav Krizek, Apr 20 2012
G.f.: x * Product_{j>=0} (1+x^(2^j))^2 = x * (1+2*x+x^2) * (1+2*x^2+x^4) * (1+2*x^4+x^8) * ... = x + 2x^2 + 3x^3 + ... . - Gary W. Adamson, Jun 26 2012
a(n) = det(binomial(i+1,j), 1 <= i,j <= n). - Mircea Merca, Apr 06 2013
E.g.f.: x*E(0), where E(k) = 1 + 1/(x - x^3/(x^2 + (k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 03 2013
From Wolfdieter Lang, Oct 09 2013: (Start)
a(n) = Product_{k=1..n-1} 2*sin(Pi*k/n), n > 1.
a(n) = Product_{k=1..n-1} (2*sin(Pi*k/(2*n)))^2, n > 1.
These identities are used in the calculation of products of ratios of lengths of certain lines in a regular n-gon. For the first identity see the Gradstein-Ryshik reference, p. 62, 1.392 1., bringing the first factor there to the left hand side and taking the limit x -> 0 (L'Hôpital). The second line follows from the first one. Thanks to Seppo Mustonen who led me to consider n-gon lengths products. (End)
a(n) = Sum_{j=0..k} (-1)^(j-1)*j*binomial(n,j)*binomial(n-1+k-j,k-j), k>=0. - Mircea Merca, Jan 25 2014
a(n) = A052410(n)^A052409(n). - Reinhard Zumkeller, Apr 06 2014
a(n) = Sum_{k=1..n^2+2*n} 1/(sqrt(k)+sqrt(k+1)). - Pierre CAMI, Apr 25 2014
a(n) = floor(1/sin(1/n)) = floor(cot(1/(n+1))) = ceiling(cot(1/n)). - Clark Kimberling, Oct 08 2014
a(n) = floor(1/(log(n+1)-log(n))). - Thomas Ordowski, Oct 10 2014
a(k) = det(S(2,k,1)). - Ryan Stees, Dec 15 2014
a(n) = 1/(1/(n+1) + 1/(n+1)^2 + 1/(n+1)^3 + ...). - Pierre CAMI, Jan 22 2015
a(n) = Sum_{m=0..n-1} Stirling1(n-1,m)*Bell(m+1), for n >= 1. This corresponds to Bell(m+1) = Sum_{k=0..m} Stirling2(m, k)*(k+1), for m >= 0, from the fact that Stirling2*Stirling1 = identity matrix. See A048993, A048994 and A000110. - Wolfdieter Lang, Feb 03 2015
a(n) = Sum_{k=1..2n-1}(-1)^(k+1)*k*(2n-k). In addition, surprisingly, a(n) = Sum_{k=1..2n-1}(-1)^(k+1)*k^2*(2n-k)^2. - Charlie Marion, Jan 05 2016
G.f.: x/(1-x)^2 = (x * r(x) *r(x^3) * r(x^9) * r(x^27) * ...), where r(x) = (1 + x + x^2)^2 = (1 + 2x + 3x^2 + 2x^3 + x^4). - Gary W. Adamson, Jan 11 2017
a(n) = floor(1/(Pi/2-arctan(n))). - Clark Kimberling, Mar 11 2020
a(n) = Sum_{d|n} mu(n/d)*sigma(d). - Ridouane Oudra, Oct 03 2020
a(n) = Sum_{k=1..n} phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 09 2021
a(n) = S(n-1, 2), with the Chebyshev S-polynomials A049310. - Wolfdieter Lang, Mar 09 2023
From Peter Bala, Nov 02 2024: (Start)
For positive integer m, a(n) = (1/m)* Sum_{k = 1..2*m*n-1} (-1)^(k+1) * k * (2*m*n - k) = (1/m) * Sum_{k = 1..2*m*n-1} (-1)^(k+1) * k^2 * (2*m*n - k)^2 (the case m = 1 is given above).
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * k * binomial(3*n+k, 2*k). (End)

Extensions

Links edited by Daniel Forgues, Oct 07 2009.

A001844 Centered square numbers: a(n) = 2*n*(n+1)+1. Sums of two consecutive squares. Also, consider all Pythagorean triples (X, Y, Z=Y+1) ordered by increasing Z; then sequence gives Z values.

Original entry on oeis.org

1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, 3961, 4141, 4325, 4513
Offset: 0

Views

Author

Keywords

Comments

These are Hogben's central polygonal numbers denoted by
...2...
....P..
...4.n.
Numbers of the form (k^2+1)/2 for k odd.
(y(2x+1))^2 + (y(2x^2+2x))^2 = (y(2x^2+2x+1))^2. E.g., let y = 2, x = 1; (2(2+1))^2 + (2(2+2))^2 = (2(2+2+1))^2, (2(3))^2 + (2(4))^2 = (2(5))^2, 6^2 + 8^2 = 10^2, 36 + 64 = 100. - Glenn B. Cox (igloos_r_us(AT)canada.com), Apr 08 2002
a(n) is also the number of 3 X 3 magic squares with sum 3(n+1). - Sharon Sela (sharonsela(AT)hotmail.com), May 11 2002
For n > 0, a(n) is the smallest k such that zeta(2) - Sum_{i=1..k} 1/i^2 <= zeta(3) - Sum_{i=1..n} 1/i^3. - Benoit Cloitre, May 17 2002
Number of convex polyominoes with a 2 X (n+1) minimal bounding rectangle.
The prime terms are given by A027862. - Lekraj Beedassy, Jul 09 2004
First difference of a(n) is 4n = A008586(n). Any entry k of the sequence is followed by k + 2*(1 + sqrt(2k - 1)). - Lekraj Beedassy, Jun 04 2006
Integers of the form 1 + x + x^2/2 (generating polynomial is Schur's polynomial as in A127876). - Artur Jasinski, Feb 04 2007
If X is an n-set and Y and Z disjoint 2-subsets of X then a(n-4) is equal to the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Aug 26 2007
Row sums of triangle A132778. - Gary W. Adamson, Sep 02 2007
Binomial transform of [1, 4, 4, 0, 0, 0, ...]; = inverse binomial transform of A001788: (1, 6, 24, 80, 240, ...). - Gary W. Adamson, Sep 02 2007
Narayana transform (A001263) of [1, 4, 0, 0, 0, ...]. Equals A128064 (unsigned) * [1, 2, 3, ...]. - Gary W. Adamson, Dec 29 2007
k such that the Diophantine equation x^3 - y^3 = x*y + k has a solution with y = x-1. If that solution is (x,y) = (m+1,m) then m^2 + (m+1)^2 = k. Note that this Diophantine equation is an elliptic curve and (m+1,m) is an integer point on it. - James R. Buddenhagen, Aug 12 2008
Numbers k such that (k, k, 2*k-2) are the sides of an isosceles triangle with integer area. Also, k such that 2*k-1 is a square. - James R. Buddenhagen, Oct 17 2008
a(n) is also the least weight of self-conjugate partitions having n+1 different odd parts. - Augustine O. Munagi, Dec 18 2008
Prefaced with a "1": (1, 1, 5, 13, 25, 41, ...) = A153869 * (1, 2, 3, ...). - Gary W. Adamson, Jan 03 2009
Prefaced with a "1": (1, 1, 5, 13, 25, 41, ...) where a(n) = 2n*(n-1)+1, all tuples of square numbers (X-Y, X, X+Y) are produced by ((m*(a(n)-2n))^2, (m*a(n))^2, (m*(a(n)+2n-2))^2) where m is a whole number. - Doug Bell, Feb 27 2009
Equals (1, 2, 3, ...) convolved with (1, 3, 4, 4, 4, ...). E.g., a(3) = 25 = (1, 2, 3, 4) dot (4, 4, 3, 1) = (4 + 8 + 9 + 4). - Gary W. Adamson, May 01 2009
The running sum of squares taken two at a time. - Al Hakanson (hawkuu(AT)gmail.com), May 18 2009
Equals the odd integers convolved with (1, 2, 2, 2, ...). - Gary W. Adamson, May 25 2009
Equals the triangular numbers convolved with [1, 2, 1, 0, 0, 0, ...]. - Gary W. Adamson & Alexander R. Povolotsky, May 29 2009
When the positive integers are written in a square array by diagonals as in A038722, a(n) gives the numbers appearing on the main diagonal. - Joshua Zucker, Jul 07 2009
The finite continued fraction [n,1,1,n] = (2n+1)/(2n^2 + 2n + 1) = (2n+1)/a(n); and the squares of the first two denominators of the convergents = a(n). E.g., the convergents and value of [4,1,1,4] = 1/4, 1/5, 2/9, 9/41 where 4^2 + 5^2 = 41. - Gary W. Adamson, Jul 15 2010
From Keith Tyler, Aug 10 2010: (Start)
Running sum of A008574.
Square open pyramidal number; that is, the number of elements in a square pyramid of height (n) with only surface and no bottom nodes. (End)
For k>0, x^4 + x^2 + k factors over the integers iff sqrt(k) is in this sequence. - James R. Buddenhagen, Aug 15 2010
Create the simple continued fraction from Pythagorean triples to get [2n + 1; 2n^2 + 2n, 2n^2 + 2n + 1]; its value equals the rational number 2n + 1 + a(n) / (4n^4 + 8n^3 + 6n^2 + 2n + 1). - J. M. Bergot, Sep 30 2011
a(n), n >= 1, has in its prime number factorization only primes of the form 4*k+1, i.e., congruent to 1 (mod 4) (see A002144). This follows from the fact that a(n) is a primitive sum of two squares and odd. See Theorem 3.20, p. 164, in the given Niven-Zuckerman-Montgomery reference. E.g., a(3) = 25 = 5^2, a(6) = 85 = 5*17. - Wolfdieter Lang, Mar 08 2012
From Ant King, Jun 15 2012: (Start)
a(n) is congruent to 1 (mod 4) for all n.
The digital roots of the a(n) form a purely periodic palindromic 9-cycle 1, 5, 4, 7, 5, 7, 4, 5, 1.
The units' digits of the a(n) form a purely periodic palindromic 5-cycle 1, 5, 3, 5, 1.
(End)
Number of integer solutions (x,y) of |x| + |y| <= n. Geometrically: number of lattice points inside a square with vertices (n,0), (0,-n), (-n,0), (0,n). - César Eliud Lozada, Sep 18 2012
(a(n)-1)/a(n) = 2*x / (1+x^2) where x = n/(n+1). Note that in this form, this is the velocity-addition formula according to the special theory of relativity (two objects traveling at 1/(n+1) slower than c relative to each other appear to travel at 1/a(n) less than c to a stationary observer). - Christian N. K. Anderson, May 20 2013 [Corrected by Rémi Guillaume, May 22 2025]
A geometric curiosity: the envelope of the circles x^2 + (y-a(n)/2)^2 = ((2n+1)/2)^2 is the parabola y = x^2, the n=0 circle being the osculating circle at the parabola vertex. - Jean-François Alcover, Dec 02 2013
Draw n ellipses in the plane (n>0), any 2 meeting in 4 points; a(n-1) gives the number of internal regions into which the plane is divided (cf. A051890, A046092); a(n-1) = A051890(n) - 1 = A046092(n-1) + 1. - Jaroslav Krizek, Dec 27 2013
a(n) is also, of course, the scalar product of the 2-vector (n, n+1) (or (n+1, n)) with itself. The unique inverse of (n, n+1) as vector in the Clifford algebra over the Euclidean 2-space is (1/a(n))(0, n, n+1, 0) (similarly for the other vector). In general the unique inverse of such a nonzero vector v (odd element in Cl_2) is v^(-1) = (1/|v|^2) v. Note that the inverse with respect to the scalar product is not unique for any nonzero vector. See the P. Lounesto reference, sects. 1.7 - 1.12, pp. 7-14. See also the Oct 15 2014 comment in A147973. - Wolfdieter Lang, Nov 06 2014
Subsequence of A004431, for n >= 1. - Bob Selcoe, Mar 23 2016
Numbers k such that 2k - 1 is a perfect square. - Juri-Stepan Gerasimov, Apr 06 2016
The number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 574", based on the 5-celled von Neumann neighborhood. - Robert Price, May 13 2016
a(n) is the first integer in a sum of (2*n + 1)^2 consecutive integers that equals (2*n + 1)^4. - Patrick J. McNab, Dec 24 2016
Central elements of odd-length rows of the triangular array of positive integers. a(n) is the mean of the numbers in the (2*n + 1)-th row of this triangle. - David James Sycamore, Aug 01 2018
Intersection of A000982 and A080827. - David James Sycamore, Aug 07 2018
An off-diagonal of the array of Delannoy numbers, A008288, (or a row/column when the array is shown as a square). As such, this is one of the crystal ball sequences. - Jack W Grahl, Feb 15 2021 and Shel Kaphan, Jan 18 2023
a(n) appears as a solution to a "Riddler Express" puzzle on the FiveThirtyEight website. The Jan 21 2022 issue (problem) and the Jan 28 2022 issue (solution) present the following puzzle and include a proof. - Fold a square piece of paper in half, obtaining a rectangle. Fold again to obtain a square with 1/4 the size of the original square. Then make n cuts through the folded paper. a(n) is the greatest number of pieces of the unfolded paper after the cutting. - Manfred Boergens, Feb 22 2022
a(n) is (1/6) times the number of 2 X 2 triangles in the n-th order hexagram with 12*n^2 cells. - Donghwi Park, Feb 06 2024
If k is a centered square number, its index in this sequence is n = (sqrt(2k-1)-1)/2. - Rémi Guillaume, Mar 30 2025.
Row sums of the symmetric triangle of odd numbers [1]; [1, 3, 1]; [1, 3, 5, 3, 1]; [1, 3, 5, 7, 5, 3, 1]; .... - Marco Zárate, Jun 15 2025

Examples

			G.f.: 1 + 5*x + 13*x^2 + 25*x^3 + 41*x^4 + 61*x^5 + 85*x^6 + 113*x^7 + 145*x^8 + ...
The first few triples are (1,0,1), (3,4,5), (5,12,13), (7,24,25), ...
The first four such partitions, corresponding to n = 0,1,2,3, i.e., to a(n) = 1,5,13,25, are 1, 3+1+1, 5+3+3+1+1, 7+5+5+3+3+1+1. - _Augustine O. Munagi_, Dec 18 2008
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 3.
  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 125, 1964.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 50.
  • Pertti Lounesto, Clifford Algebras and Spinors, second edition, Cambridge University Press, 2001.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.
  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Travers et al., The Mysterious Lost Proof, Using Advanced Algebra, (1976), pp. 27.

Crossrefs

X values are A005408; Y values are A046092.
Cf. A008586 (first differences), A005900 (partial sums), A254373 (digital roots).
Subsequence of A004431.
Right edge of A055096; main diagonal of A069480, A078475, A129312.
Row n=2 (or column k=2) of A008288.
Cf. A016754.

Programs

  • Haskell
    a001844 n = 2 * n * (n + 1) + 1
    a001844_list = zipWith (+) a000290_list $ tail a000290_list
    -- Reinhard Zumkeller, Dec 04 2012
    
  • Magma
    [2*n^2 + 2*n + 1: n in [0..50]]; // Vincenzo Librandi, Jan 19 2013
    
  • Magma
    [n: n in [0..4400] | IsSquare(2*n-1)]; // Juri-Stepan Gerasimov, Apr 06 2016
    
  • Maple
    A001844:=-(z+1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[2n(n + 1) + 1, {n, 0, 50}]
    FoldList[#1 + #2 &, 1, 4 Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
    maxn := 47; Flatten[Table[SeriesCoefficient[Series[(n + (n - 1)*x)/(1 - x)^2, {x, 0, maxn}], k], {n, maxn}, {k, n - 1, n - 1}]] (* L. Edson Jeffery, Aug 24 2014 *)
    CoefficientList[ Series[-(x^2 + 2x + 1)/(x - 1)^3, {x, 0, 48}], x] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 5, 13}, 48] (* Robert G. Wilson v, Aug 01 2018 *)
    Total/@Partition[Range[0,50]^2,2,1] (* Harvey P. Dale, Dec 05 2020 *)
    Table[ j! Coefficient[Series[Exp[x]*(1 + 4*x + 2*x^2), {x, 0, 20}], x,
    j], {j, 0, 20}] (* Nikolaos Pantelidis, Feb 07 2023 *)
  • PARI
    {a(n) = 2*n*(n+1) + 1};
    
  • PARI
    x='x+O('x^200); Vec((1+x)^2/(1-x)^3) \\ Altug Alkan, Mar 23 2016
    
  • Python
    print([2*n*(n+1)+1 for n in range(48)]) # Michael S. Branicky, Jan 05 2021
  • Sage
    [i**2 + (i + 1)**2 for i in range(46)] # Zerinvary Lajos, Jun 27 2008
    

Formula

a(n) = 2*n^2 + 2*n + 1 = n^2 + (n+1)^2.
a(n) = 1 + 3 + 5 + ... + 2*n-1 + 2*n+1 + 2*n-1 + ... + 3 + 1. - Amarnath Murthy, May 28 2001
a(n) = 1/real(z(n+1)) where z(1)=i, (i^2=-1), z(k+1) = 1/(z(k)+2i). - Benoit Cloitre, Aug 06 2002
Nearest integer to 1/Sum_{k>n} 1/k^3. - Benoit Cloitre, Jun 12 2003
G.f.: (1+x)^2/(1-x)^3.
E.g.f.: exp(x)*(1+4x+2x^2).
a(n) = a(n-1) + 4n.
a(-n) = a(n-1).
a(n) = A064094(n+3, n) (fourth diagonal).
a(n) = 1 + Sum_{j=0..n} 4*j. - Xavier Acloque, Oct 08 2003
a(n) = A046092(n)+1 = (A016754(n)+1)/2. - Lekraj Beedassy, May 25 2004
a(n) = Sum_{k=0..n+1} (-1)^k*binomial(n, k)*Sum_{j=0..n-k+1} binomial(n-k+1, j)*j^2. - Paul Barry, Dec 22 2004
a(n) = ceiling((2n+1)^2/2). - Paul Barry, Jul 16 2006
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=1, a(1)=5, a(2)=13. - Jaume Oliver Lafont, Dec 02 2008
a(n)*a(n-1) = 4*n^4 + 1 for n > 0. - Reinhard Zumkeller, Feb 12 2009
Prefaced with a "1" (1, 1, 5, 13, 25, 41, ...): a(n) = 2*n*(n-1)+1. - Doug Bell, Feb 27 2009
a(n) = sqrt((A056220(n)^2 + A056220(n+1)^2) / 2). - Doug Bell, Mar 08 2009
a(n) = floor(2*(n+1)^3/(n+2)). - Gary Detlefs, May 20 2010
a(n) = A000330(n) - A000330(n-2). - Keith Tyler, Aug 10 2010
a(n) = A069894(n)/2. - J. M. Bergot, Jun 11 2012
a(n) = 2*a(n-1) - a(n-2) + 4. - Ant King, Jun 12 2012
Sum_{n>=0} 1/a(n) = (Pi/2)*tanh(Pi/2) = 1.4406595199775... = A228048. - Ant King, Jun 15 2012
a(n) = A209297(2*n+1,n+1). - Reinhard Zumkeller, Jan 19 2013
a(n)^3 = A048395(n)^2 + A048395(-n-1)^2. - Vincenzo Librandi, Jan 19 2013
a(n) = A000217(2n+1) - n. - Ivan N. Ianakiev, Nov 08 2013
a(n) = A251599(3*n+1). - Reinhard Zumkeller, Dec 13 2014
a(n) = A101321(4,n). - R. J. Mathar, Jul 28 2016
From Ilya Gutkovskiy, Jul 30 2016: (Start)
a(n) = Sum_{k=0..n} A008574(k).
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = exp(-1) = A068985. (End)
a(n) = 4 * A000217(n) + 1. - Bruce J. Nicholson, Jul 10 2017
a(n) = A002522(n) + A005563(n) = A002522(n+1) + A005563(n-1). - Bruce J. Nicholson, Aug 05 2017
Sum_{n>=0} a(n)/n! = 7*e. Sum_{n>=0} 1/a(n) = A228048. - Amiram Eldar, Jun 20 2020
a(n) = A000326(n+1) + A000217(n-1). - Charlie Marion, Nov 16 2020
a(n) = Integral_{x=0..2n+2} |1-x| dx. - Pedro Caceres, Dec 29 2020
From Amiram Eldar, Feb 17 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(sqrt(3)*Pi/2)*sech(Pi/2).
Product_{n>=1} (1 - 1/a(n)) = Pi*csch(Pi)*sinh(Pi/2). (End)
a(n) = A001651(n+1) + 1 - A028242(n). - Charlie Marion, Apr 05 2022
a(n) = A016754(n) - A046092(n). - Leo Tavares, Sep 16 2022
For n>0, a(n) = A101096(n+2) / 30. - Andy Nicol, Feb 06 2025
From Rémi Guillaume, Apr 21 2025: (Start)
a(n) = (2*A003215(n)+1)/3.
a(n) = (4*A005448(n+1)-1)/3.
a(n) + a(n-1) = A001845(n) - A001845(n-1), for n >= 1.
a(n) = (A005917(n+1))/(2n+1). (End)

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A056011 Enumeration of natural numbers by the boustrophedonic diagonal method.

Original entry on oeis.org

1, 3, 2, 4, 5, 6, 10, 9, 8, 7, 11, 12, 13, 14, 15, 21, 20, 19, 18, 17, 16, 22, 23, 24, 25, 26, 27, 28, 36, 35, 34, 33, 32, 31, 30, 29, 37, 38, 39, 40, 41, 42, 43, 44, 45, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66
Offset: 1

Views

Author

Clark Kimberling, Aug 01 2000

Keywords

Comments

A triangle such that (1) every positive integer occurs exactly once; (2) row n consists of n consecutive numbers; (3) odd-numbered rows are increasing; and (4) even-numbered rows are decreasing.
Self-inverse permutation of the natural numbers.
Mirror image of triangle in A056023. - Philippe Deléham, Apr 04 2009
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers. - Boris Putievskiy, Dec 24 2012
For generalizations see A218890, A213927. - Boris Putievskiy, Mar 10 2013

Examples

			The start of the sequence as a table:
   1,  3,  4, 10, 11, 21, ...
   2,  5,  9, 12, 20, 23, ...
   6,  8, 13, 19, 24, 34, ...
   7, 14, 18, 25, 33, 40, ...
  15, 17, 26, 32, 41, 51, ...
  ...
Enumeration by boustrophedonic ("ox-plowing") diagonal method. - _Boris Putievskiy_, Dec 24 2012
The start of the sequence as triangle array read by rows:
   1;
   3,  2;
   4,  5,  6;
  10,  9,  8,  7;
  11, 12, 13, 14, 15;
  ...
		

Crossrefs

Cf. A079826, A131179 (first column), A218890, A213927.

Programs

  • Haskell
    a056011 n = a056011_tabl !! (n-1)
    a056011_list = concat a056011_tabl
    a056011_tabl = ox False a000027_tabl where
      ox turn (xs:xss) = (if turn then reverse xs else xs) : ox (not turn) xss
    a056011_row n = a056011_tabl !! (n-1)
    -- Reinhard Zumkeller, Nov 08 2013
  • Maple
    A056011 := proc(n,k)
            if type(n,'even') then
                    A131179(n)-k+1 ;
            else
                    A131179(n)+k-1 ;
            end if;
    end proc: # R. J. Mathar, Sep 05 2012
  • Mathematica
    Flatten[If[EvenQ[Length[#]],Reverse[#],#]&/@Table[c=(n(n+1))/2;Range[ c-n+1,c],{n,20}]] (* Harvey P. Dale, Mar 25 2012 *)
    With[{nn=20},{#[[1]],Reverse[#[[2]]]}&/@Partition[ TakeList[ Range[ (nn(nn+1))/2],Range[nn]],2]//Flatten] (* Harvey P. Dale, Oct 05 2021 *)

Formula

a(n) = ((i+j-1)*(i+j-2)+((-1)^t+1)*i - ((-1)^t-1)*j)/2, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 24 2012

Extensions

New name from Peter Luschny, Apr 15 2023, based on Boris Putievskiy's comment

A061579 Reverse one number (0), then two numbers (2,1), then three (5,4,3), then four (9,8,7,6), etc.

Original entry on oeis.org

0, 2, 1, 5, 4, 3, 9, 8, 7, 6, 14, 13, 12, 11, 10, 20, 19, 18, 17, 16, 15, 27, 26, 25, 24, 23, 22, 21, 35, 34, 33, 32, 31, 30, 29, 28, 44, 43, 42, 41, 40, 39, 38, 37, 36, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66
Offset: 0

Views

Author

Henry Bottomley, May 21 2001

Keywords

Comments

A self-inverse permutation of the nonnegative numbers.
a(n) is the smallest nonnegative integer not yet in the sequence such that n + a(n) is one less than a square. - Franklin T. Adams-Watters, Apr 06 2009
From Michel Marcus, Mar 01 2021: (Start)
Array T(n,k) = (n+k)^2/2 + (n+3*k)/2 for n,k >= 0 read by descending antidiagonals.
Array T(n,k) = (n+k)^2/2 + (3*n+k)/2 for n,k >= 0 read by ascending antidiagonals. (End)

Examples

			Read as a triangle, the sequence is:
    0
    2   1
    5   4   3
    9   8   7   6
   14  13  12  11  10
  (...)
As an infinite square matrix (cf. the "table" link, 2nd paragraph) it reads:
    0    2    5    9   14   20   ...
    1    4    8   13   19   22   ...
    3    7   12   18   23   30   ...
    6   11   17   24   31   39   ...
  (...)
		

Crossrefs

Fixed points are A046092.
Row sums give A027480.
Each reversal involves the numbers from A000217 through to A000096.
Cf. A038722. Transpose of A001477.

Programs

  • Maple
    T:= (n,k)-> n*(n+3)/2-k:
    seq(seq(T(n,k), k=0..n), n=0..12);  # Alois P. Heinz, Feb 10 2023
  • Mathematica
    Module[{nn=20},Reverse/@TakeList[Range[0,(nn(nn+1))/2],Range[nn]]]// Flatten (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Jul 06 2018 *)
  • PARI
    A061579_row(n)=vector(n+=1, j, n*(n+1)\2-j)
    A061579_upto(n)=concat([A061579_row(r)|r<-[0..sqrtint(2*n)]]) \\ yields approximately n terms: actual number differs by less than +- sqrt(n). - M. F. Hasler, Nov 09 2021
    
  • Python
    from math import isqrt
    def A061579(n): return (r:=isqrt((n<<3)+1)-1>>1)*(r+2)-n # Chai Wah Wu, Feb 10 2023

Formula

a(n) = floor(sqrt(2n+1)-1/2)*floor(sqrt(2n+1)+3/2) - n = A005563(A003056(n)) - n.
Row (or antidiagonal) n = 0, 1, 2, ... contains the integers from A000217(n) to A000217(n+1)-1 in reverse order (for diagonals, "reversed" with respect to the canonical "falling" order, cf. A001477/table). - M. F. Hasler, Nov 09 2021
From Alois P. Heinz, Feb 10 2023: (Start)
T(n,k) = n*(n+3)/2 - k.
Sum_{k=0..n} k * T(n,k) = A002419(n).
Sum_{k=0..n} k^2 * T(n,k) = A119771(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A226725(n). (End)

A191450 Dispersion of (3*n-1), read by antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 8, 4, 14, 23, 11, 6, 41, 68, 32, 17, 7, 122, 203, 95, 50, 20, 9, 365, 608, 284, 149, 59, 26, 10, 1094, 1823, 851, 446, 176, 77, 29, 12, 3281, 5468, 2552, 1337, 527, 230, 86, 35, 13, 9842, 16403, 7655, 4010, 1580, 689, 257, 104, 38, 15, 29525
Offset: 1

Views

Author

Clark Kimberling, Jun 05 2011

Keywords

Comments

Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n) = {index of the row of D that contains n} is a fractal sequence. In this case s(n) = A016789(n-1), t(n) = A032766(n) [from term A032766(1) onward] and u(n) = A253887(n). [Author's original comment edited by Antti Karttunen, Jan 24 2015]
For other examples of such sequences, please see the Crossrefs section.

Examples

			The northwest corner of the square array:
  1,  2,  5,  14,  41,  122,  365,  1094,  3281,   9842,  29525,   88574, ...
  3,  8, 23,  68, 203,  608, 1823,  5468, 16403,  49208, 147623,  442868, ...
  4, 11, 32,  95, 284,  851, 2552,  7655, 22964,  68891, 206672,  620015, ...
  6, 17, 50, 149, 446, 1337, 4010, 12029, 36086, 108257, 324770,  974309, ...
  7, 20, 59, 176, 527, 1580, 4739, 14216, 42647, 127940, 383819, 1151456, ...
  9, 26, 77, 230, 689, 2066, 6197, 18590, 55769, 167306, 501917, 1505750, ...
  etc.
The leftmost column is A032766, and each successive column to the right of it is obtained by multiplying the left neighbor on that row by three and subtracting one, thus the second column is (3*1)-1, (3*3)-1, (3*4)-1, (3*6)-1, (3*7)-1, (3*9)-1, ... = 2, 8, 11, 17, 20, 26, ...
		

Crossrefs

Inverse: A254047.
Transpose: A254051.
Column 1: A032766.
Cf. A007051, A057198, A199109, A199113 (rows 1-4).
Cf. A253887 (row index of n in this array) & A254046 (column index, see also A253786).
Examples of other arrays of dispersions: A114537, A035513, A035506, A191449, A191426-A191455.

Programs

  • Maple
    A191450 := proc(r, c)
        option remember;
        if c = 1 then
            A032766(r) ;
        else
            A016789(procname(r, c-1)-1) ;
        end if;
    end proc: # R. J. Mathar, Jan 25 2015
  • Mathematica
    (* Program generates the dispersion array T of increasing sequence f[n] *)
    r=40; r1=12; c=40; c1=12;
    f[n_] :=3n-1 (* complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191450 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191450 sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)
  • PARI
    a(n,k)=3^(n-1)*(k*3\2*2-1)\2+1 \\ =3^(n-1)*(k*3\2-1/2)+1/2, but 30% faster. - M. F. Hasler, Jan 20 2015
    
  • Scheme
    (define (A191450 n) (A191450bi (A002260 n) (A004736 n)))
    (define (A191450bi row col) (if (= 1 col) (A032766 row) (A016789 (- (A191450bi row (- col 1)) 1))))
    (define (A191450bi row col) (/ (+ 3 (* (A000244 col) (- (* 2 (A032766 row)) 1))) 6)) ;; Another implementation based on L. Edson Jeffery's direct formula.
    ;; Antti Karttunen, Jan 21 2015

Formula

Conjecture: A(n,k) = (3 + (2*A032766(n) - 1)*A000244(k))/6. - L. Edson Jeffery, with slight changes by Antti Karttunen, Jan 21 2015
a(n) = A254051(A038722(n)). [When both this and transposed array A254051 are interpreted as one-dimensional sequences.] - Antti Karttunen, Jan 22 2015

Extensions

Example corrected and description clarified by Antti Karttunen, Jan 24 2015

A254051 Square array A by downward antidiagonals: A(n,k) = (3 + 3^n*(2*floor(3*k/2) - 1))/6, n,k >= 1; read as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 3, 2, 4, 8, 5, 6, 11, 23, 14, 7, 17, 32, 68, 41, 9, 20, 50, 95, 203, 122, 10, 26, 59, 149, 284, 608, 365, 12, 29, 77, 176, 446, 851, 1823, 1094, 13, 35, 86, 230, 527, 1337, 2552, 5468, 3281, 15, 38, 104, 257, 689, 1580, 4010, 7655, 16403, 9842, 16, 44, 113, 311, 770, 2066, 4739, 12029, 22964, 49208, 29525, 18, 47
Offset: 1

Views

Author

Keywords

Comments

This is transposed dispersion of (3n-1), starting from its complement A032766 as the first row of square array A(row,col). Please see the transposed array A191450 for references and background discussion about dispersions.
For any odd number x = A135765(row,col), the result after one combined Collatz step (3x+1)/2 -> x (A165355) is found in this array at A(row+1,col).

Examples

			The top left corner of the array:
   1,   3,   4,   6,   7,   9,  10,  12,   13,   15,   16,   18,   19,   21
   2,   8,  11,  17,  20,  26,  29,  35,   38,   44,   47,   53,   56,   62
   5,  23,  32,  50,  59,  77,  86, 104,  113,  131,  140,  158,  167,  185
  14,  68,  95, 149, 176, 230, 257, 311,  338,  392,  419,  473,  500,  554
  41, 203, 284, 446, 527, 689, 770, 932, 1013, 1175, 1256, 1418, 1499, 1661
...
		

Crossrefs

Inverse: A254052.
Transpose: A191450.
Row 1: A032766.
Cf. A007051, A057198, A199109, A199113 (columns 1-4).
Cf. A254046 (row index of n in this array, see also A253786), A253887 (column index).
Array A135765(n,k) = 2*A(n,k) - 1.
Other related arrays: A254055, A254101, A254102.
Related permutations: A048673, A254053, A183209, A249745, A254103, A254104.

Formula

In A(n,k)-formulas below, n is the row, and k the column index, both starting from 1:
A(n,k) = (3 + ( A000244(n) * (2*A032766(k) - 1) )) / 6. - Antti Karttunen after L. Edson Jeffery's direct formula for A191450, Jan 24 2015
A(n,k) = A048673(A254053(n,k)). [Alternative formula.]
A(n,k) = (1/2) * (1 + A003961((2^(n-1)) * A254050(k))). [The above expands to this.]
A(n,k) = (1/2) * (1 + (A000244(n-1) * A007310(k))). [Which further reduces to this, equivalent to L. Edson Jeffery's original formula above.]
A(1,k) = A032766(k) and for n > 1: A(n,k) = (3 * A254051(n-1,k)) - 1. [The definition of transposed dispersion of (3n-1).]
A(n,k) = (1+A135765(n,k))/2, or when expressed one-dimensionally, a(n) = (1+A135765(n))/2.
A(n+1,k) = A165355(A135765(n,k)).
As a composition of related permutations. All sequences interpreted as one-dimensional:
a(n) = A048673(A254053(n)). [Proved above.]
a(n) = A191450(A038722(n)). [Transpose of array A191450.]
Showing 1-10 of 32 results. Next