cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 340 results. Next

A363267 Squares (A000290) alternating with centered squares (A001844).

Original entry on oeis.org

1, 1, 4, 5, 9, 13, 16, 25, 25, 41, 36, 61, 49, 85, 64, 113, 81, 145, 100, 181, 121, 221, 144, 265, 169, 313, 196, 365, 225, 421, 256, 481, 289, 545, 324, 613, 361, 685, 400, 761, 441, 841, 484, 925, 529, 1013, 576, 1105, 625, 1201, 676, 1301, 729, 1405, 784
Offset: 1

Views

Author

Clark Kimberling, May 24 2023

Keywords

Comments

This is a linear recurrence sequence. If the terms are arranged in nondecreasing order, the result, A363319, is linearly recurrent. If the terms are arranged in increasing order, so that there are no duplicates, the result, A363282, is not linearly recurrent.

Crossrefs

Programs

  • Mathematica
    c[1] = 1; c[2] = 1;
    c[n_] := If[OddQ[n], c[n - 2] + n, 2 c[n - 1] - n + 1]
    Table[c[n], {n, 1, 120}]

Formula

a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6).
G.f.: x*(-1 - x - x^2 - 2 x^3 - x^5)/(-1 + x^2)^3.
a(n+1) = n/2+3*n^2/8+3/4+(-1)^n*(1/4+n/2-n^2/8). - R. J. Mathar, Jun 15 2023

A190406 Decimal expansion of Sum_{k>=1} (1/2)^S(k-1), where S=A001844 (centered square numbers).

Original entry on oeis.org

5, 3, 1, 3, 7, 2, 1, 0, 0, 1, 1, 5, 2, 7, 7, 1, 3, 5, 4, 7, 9, 8, 7, 9, 8, 5, 8, 9, 6, 2, 5, 5, 3, 5, 3, 1, 7, 1, 2, 8, 4, 3, 2, 0, 1, 8, 6, 2, 0, 6, 6, 3, 9, 4, 0, 7, 8, 8, 8, 7, 1, 6, 1, 3, 5, 7, 8, 9, 0, 6, 8, 8, 0, 2, 3, 7, 7, 6, 0, 4, 7, 6, 0, 7, 3, 0, 3, 4, 5, 7, 7, 9, 6, 0, 7, 1, 2, 3, 4, 9, 2, 0, 6, 1, 0, 7, 1, 1, 5, 2, 2, 0, 6, 3, 9, 0, 0, 7, 3, 5
Offset: 0

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

See A190404.

Crossrefs

Programs

  • Maple
    evalf(JacobiTheta2(0,1/4)/2^(3/2)) ; # R. J. Mathar, Jul 15 2013
  • Mathematica
    (See A190404.)
    (* or *) RealDigits[EllipticTheta[2, 0, 1/4]/(2*Sqrt[2]), 10, 120] // First (* Jean-François Alcover, Feb 12 2013 *)
  • PARI
    th2(x)=x^.25 + 2*suminf(n=1,x^(n+1/2)^2)
    th2(1/4)/sqrt(8) \\ Charles R Greathouse IV, Jun 06 2016
  • Sage
    def A190406(b): # Generate the constant with b bits of precision
        return N(sum([(1/2)^(2*j*(j+1)+1) for j in range(0,b)]),b)
    A190406(409) # Danny Rorabaugh, Mar 26 2015
    

Formula

a(n) = floor(10^(n+1)*Sum_{j>=0} (1/2)^(2*j*(j+1)+1)) mod 10. - Danny Rorabaugh, Mar 26 2015

A253460 Indices of centered heptagonal numbers (A069099) which are also centered square numbers (A001844).

Original entry on oeis.org

1, 16, 112, 3937, 28321, 999856, 7193296, 253959361, 1827068737, 64504677712, 464068265776, 16383934179361, 117871512438241, 4161454776879856, 29938900091047312, 1056993129393303937, 7604362751613578881, 268472093411122320016, 1931478200009757988336
Offset: 1

Views

Author

Colin Barker, Jan 01 2015

Keywords

Comments

Also positive integers y in the solutions to 4*x^2 - 7*y^2 - 4*x + 7*y = 0, the corresponding values of x being A253459.

Examples

			16 is in the sequence because the 16th centered heptagonal number is 841, which is also the 21st centered square number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^4+15*x^3-158*x^2+15*x+1)/((x-1)*(x^2-16*x+1)*(x^2+16*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+254*a(n-2)-254*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+15*x^3-158*x^2+15*x+1) / ((x-1)*(x^2-16*x+1)*(x^2+16*x+1)).
a(n) = A105040(n) + 1. - Michel Marcus, Mar 12 2024

A253475 Indices of centered square numbers (A001844) which are also centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 6, 55, 540, 5341, 52866, 523315, 5180280, 51279481, 507614526, 5024865775, 49741043220, 492385566421, 4874114620986, 48248760643435, 477613491813360, 4727886157490161, 46801248083088246, 463284594673392295, 4586044698650834700, 45397162391834954701
Offset: 1

Views

Author

Colin Barker, Jan 02 2015

Keywords

Comments

Also positive integers x in the solutions to 4*x^2 - 6*y^2 - 4*x + 6*y = 0, the corresponding values of y being A054318.
Also indices of centered hexagonal numbers (A003215) which are also hexagonal numbers (A000384).
Also indices of terms in sequence A193218 which are the square root of a sum of 5th powers (A000539). - Daniel Poveda Parrilla, Jun 10 2017

Examples

			6 is in the sequence because the 6th centered square number is 61, which is also the 5th centered hexagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{11, -11, 1}, {1, 6, 55}, 25] (* Paolo Xausa, May 30 2025 *)
  • PARI
    Vec(x*(5*x-1)/((x-1)*(x^2-10*x+1)) + O(x^100))

Formula

a(n) = 11*a(n-1)-11*a(n-2)+a(n-3).
G.f.: x*(5*x-1) / ((x-1)*(x^2-10*x+1)).
a(n) = sqrt((-2-(5-2*sqrt(6))^n-(5+2*sqrt(6))^n)*(2-(5-2*sqrt(6))^(1+n)-(5+2*sqrt(6))^(1+n)))/(4*sqrt(2)). - Gerry Martens, Jun 04 2015
2*a(n) = 1+A054320(n-1). - R. J. Mathar, Feb 07 2022

A308215 a(n) is the multiplicative inverse of A001844(n+1) modulo A001844(n); where A001844 is the sequence of centered square numbers.

Original entry on oeis.org

0, 2, 12, 11, 39, 28, 82, 53, 141, 86, 216, 127, 307, 176, 414, 233, 537, 298, 676, 371, 831, 452, 1002, 541, 1189, 638, 1392, 743, 1611, 856, 1846, 977, 2097, 1106, 2364, 1243, 2647, 1388, 2946, 1541, 3261, 1702, 3592, 1871, 3939, 2048
Offset: 0

Views

Author

Daniel Hoyt, May 15 2019

Keywords

Comments

The sequence explores the relationship between the terms of A001844, the sums of consecutive squares. The sequence is an interleaving of A054552 (a number spiral arm) and (A001844-n). The gap between the lower values of A308215 and the upper values of A308217 increase by 3n; each successive gap increasing by 6.

Crossrefs

Programs

  • PARI
    f(n) = 2*n*(n+1)+1; \\ A001844
    a(n) = lift(1/Mod(f(n+1), f(n))); \\ Michel Marcus, May 16 2019
  • Python
    import gmpy2
    sos = [] # sum of squares
    a=0
    b=1
    for i in range(50):
        c = a**2 + b**2
        sos.append(c)
        a +=1
        b +=1
    ls = []
    for i in range(len(sos)-1):
        c = gmpy2.invert(sos[i+1],sos[i])
        ls.append(int(c))
    print(ls)
    

Formula

a(n) satisfies a(n)*(2*n*(n+1)+1) == 1 (mod 2*n*(n-1)+1).
Conjectures from Colin Barker, May 16 2019: (Start)
G.f.: x*(2 + 12*x + 5*x^2 + 3*x^3 + x^4 + x^5) / ((1 - x)^3*(1 + x)^3).
a(n) = (3 + (-1)^n + 2*(2+(-1)^n)*n + 2*(3+(-1)^n)*n^2) / 4 for n>0.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
(End)

A308217 a(n) is the multiplicative inverse of A001844(n) modulo A001844(n+1); where A001844 is the sequence of centered square numbers.

Original entry on oeis.org

1, 8, 2, 23, 3, 46, 4, 77, 5, 116, 6, 163, 7, 218, 8, 281, 9, 352, 10, 431, 11, 518, 12, 613, 13, 716, 14, 827, 15, 946, 16, 1073, 17, 1208, 18, 1351, 19, 1502, 20, 1661, 21, 1828, 22, 2003, 23, 2186, 24, 2377, 25, 2576, 26, 2783, 27, 2998, 28, 3221, 29, 3452
Offset: 0

Views

Author

Daniel Hoyt, May 15 2019

Keywords

Comments

The sequence explores the relationship between the terms of A001844, the sums of consecutive squares. The sequence is an interleaving of A033951 (a number spiral arm) and the natural numbers. The gap between the lower values of A308215 and the upper values of A308217 increase by 3n; each successive gap increasing by 6.

Crossrefs

Programs

Formula

a(n) satisfies a(n)*(2*n*(n-1)+1) == 1 (mod 2*n*(n+1)+1).
Conjectures from Colin Barker, May 16 2019: (Start)
G.f.: (1 + 8*x - x^2 - x^3 + x^5) / ((1 - x)^3*(1 + x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>5.
a(n) = (9 - 5*(-1)^n + (8-6*(-1)^n)*n - 2*(-1+(-1)^n)*n^2) / 4. (End)
From Robert Israel, Aug 11 2019: (Start)
a(n) = 1 + n/2 if n is even, since 0 < 1+n/2 < A001844(n+1) and (1+n/2)*A001844(n)-1 = (n/2)*A001844(n+1).
a(n) = n^2 + 7/2*(n+1) if n is odd, since 0 < n^2+7/2*(n+1) < A001844(n+1) and (n^2+7/2*(n+1))*A001844(n)-1 = (n^2+3*k/2+1/2)*A001844(n+1).
Colin Barker's conjectures easily follow. (End)
E.g.f.: ((2 + 9*x)*cosh(x) + (7 + x + 2*x^2)*sinh(x))/2. - Stefano Spezia, Dec 06 2024

A363282 Squares (A000290) and centered squares (A001844), in increasing order (i.e., sorted and without duplicates).

Original entry on oeis.org

1, 4, 5, 9, 13, 16, 25, 36, 41, 49, 61, 64, 81, 85, 100, 113, 121, 144, 145, 169, 181, 196, 221, 225, 256, 265, 289, 313, 324, 361, 365, 400, 421, 441, 481, 484, 529, 545, 576, 613, 625, 676, 685, 729, 761, 784, 841, 900, 925, 961, 1013, 1024, 1089, 1105
Offset: 1

Views

Author

Clark Kimberling, May 25 2023

Keywords

Comments

This sequence consists of the numbers in A363267 arranged in increasing order. Unlike A363267, this is not a linear recurrence sequence; see A363319.

Crossrefs

Programs

  • Mathematica
    c[1] = 1; c[2] = 1;
    c[n_] := If[OddQ[n], c[n - 2] + n, 2 c[n - 1] - n + 1]
    u = Table[c[n], {n, 1, 120}]  (* A363267 *)
    Union[u] (* A363282 *)

Extensions

Definition corrected by N. J. A. Sloane, Jun 12 2023

A253459 Indices of centered square numbers (A001844) which are also centered heptagonal numbers (A069099).

Original entry on oeis.org

1, 21, 148, 5208, 37465, 1322685, 9515836, 335956656, 2416984753, 85331667813, 613904611300, 21673907667720, 155929354285321, 5505087215932941, 39605442083860108, 1398270478939299168, 10059626359946181985, 355155196563366055605, 2555105489984246363956
Offset: 1

Views

Author

Colin Barker, Jan 01 2015

Keywords

Comments

Also positive integers x in the solutions to 4*x^2 - 7*y^2 - 4*x + 7*y = 0, the corresponding values of y being A253460.

Examples

			21 is in the sequence because the 21st centered square number is 841, which is also the 16th centered heptagonal number.
		

Crossrefs

Programs

  • PARI
    Vec(x*(20*x^3+127*x^2-20*x-1)/((x-1)*(x^2-16*x+1)*(x^2+16*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+254*a(n-2)-254*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(20*x^3+127*x^2-20*x-1) / ((x-1)*(x^2-16*x+1)*(x^2+16*x+1)).

A253599 Centered square numbers (A001844) which are also centered heptagonal numbers (A069099).

Original entry on oeis.org

1, 841, 43513, 54236113, 2807177521, 3498988573081, 181102250526121, 225733748749491361, 11683630587634972513, 14562987063325697070313, 753757743549580366157401, 939516547177660272044661361, 48627927055673997154643575441, 60611970510056587727363585953081
Offset: 1

Views

Author

Colin Barker, Jan 05 2015

Keywords

Examples

			841 is in the sequence because it is the 21st centered square number and the 16th centered heptagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,64514,-64514,-1,1},{1,841,43513,54236113,2807177521},20] (* Harvey P. Dale, Mar 26 2023 *)
  • PARI
    Vec(-x*(x^4+840*x^3-21842*x^2+840*x+1)/((x-1)*(x^2-254*x+1)*(x^2+254*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+64514*a(n-2)-64514*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+840*x^3-21842*x^2+840*x+1) / ((x-1)*(x^2-254*x+1)*(x^2+254*x+1)).

A254228 Indices of heptagonal numbers (A000566) which are also centered square numbers (A001844).

Original entry on oeis.org

1, 41, 185, 13105, 59473, 4219673, 19150025, 1358721505, 6166248481, 437504104841, 1985512860761, 140874963037201, 639328974916465, 45361300593873785, 205861944410240873, 14606197916264321473, 66286906771122644545, 4703150367736517640425
Offset: 1

Views

Author

Colin Barker, Jan 27 2015

Keywords

Comments

Also positive integers x in the solutions to 5*x^2 - 4*y^2 - 3*x + 4*y - 2 = 0, the corresponding values of y being A254229.

Examples

			41 is in the sequence because the 41st heptagonal number is 4141, which is also the 46th centered square number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^4+40*x^3-178*x^2+40*x+1)/((x-1)*(x^2-18*x+1)*(x^2+18*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+322*a(n-2)-322*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+40*x^3-178*x^2+40*x+1) / ((x-1)*(x^2-18*x+1)*(x^2+18*x+1)).
Showing 1-10 of 340 results. Next