A308215 a(n) is the multiplicative inverse of A001844(n+1) modulo A001844(n); where A001844 is the sequence of centered square numbers.
0, 2, 12, 11, 39, 28, 82, 53, 141, 86, 216, 127, 307, 176, 414, 233, 537, 298, 676, 371, 831, 452, 1002, 541, 1189, 638, 1392, 743, 1611, 856, 1846, 977, 2097, 1106, 2364, 1243, 2647, 1388, 2946, 1541, 3261, 1702, 3592, 1871, 3939, 2048
Offset: 0
Keywords
Links
- Daniel Hoyt, Graph of A308215 and A308217 in relation to A001844
Programs
-
PARI
f(n) = 2*n*(n+1)+1; \\ A001844 a(n) = lift(1/Mod(f(n+1), f(n))); \\ Michel Marcus, May 16 2019
-
Python
import gmpy2 sos = [] # sum of squares a=0 b=1 for i in range(50): c = a**2 + b**2 sos.append(c) a +=1 b +=1 ls = [] for i in range(len(sos)-1): c = gmpy2.invert(sos[i+1],sos[i]) ls.append(int(c)) print(ls)
Formula
a(n) satisfies a(n)*(2*n*(n+1)+1) == 1 (mod 2*n*(n-1)+1).
Conjectures from Colin Barker, May 16 2019: (Start)
G.f.: x*(2 + 12*x + 5*x^2 + 3*x^3 + x^4 + x^5) / ((1 - x)^3*(1 + x)^3).
a(n) = (3 + (-1)^n + 2*(2+(-1)^n)*n + 2*(3+(-1)^n)*n^2) / 4 for n>0.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
(End)
Comments