cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Daniel Hoyt

Daniel Hoyt's wiki page.

Daniel Hoyt has authored 37 sequences. Here are the ten most recent ones:

A386384 Continued fraction expansion of Sum_{k>=0} (-1)^k/(k!)!.

Original entry on oeis.org

0, 2, 179, 1, 1, 1196852626800230399, 2, 179, 1, 1, 17377308326435956818596067989554034737368967210468674554156131654360754429984573360106123813424835044026977477398690421454067571097599999999999999999999, 2, 179, 2, 1196852626800230399, 1, 1, 179, 2
Offset: 0

Author

Daniel Hoyt, Aug 17 2025

Keywords

Comments

The peak terms have the form P(k) = ((k+1)!)! / ((k!)!)^2 - 1. The sequence is an interleaving between the n-th runs of '2' and '1,1' in A386385, and P(A001511(n)+1).

Crossrefs

Cf. A387268 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sum[(-1)^k/(k!)!, {k, 0, 6}], 21]
  • Python
    import sys #for printing huge factorials
    sys.set_int_max_str_digits(0)  # otherwise sys not needed.
    def a386384(n):
        import math
        if n==0: return 0
        t=n-1; M=0x18199818
        s=[1,1]; h=2; p=0; r=0
        def g(u):
            nonlocal s,h
            while len(s)>(r&31))&1) else ('A' if xb=='B' else 'B')
            L = 2 if yb=='A' else 1
            if t < L: return 1 if yb=='A' else 2
            t -= L
            if t==0:
                rr=r+1
                K=((rr & -rr).bit_length()-1)+2
                A=math.factorial(math.factorial(K+1))
                B=math.factorial(math.factorial(K))
                return A//(B*B)-1
            t-=1; r+=1

A387268 Decimal expansion of Sum_{k>=0} (-1)^k/(k!)!.

Original entry on oeis.org

4, 9, 8, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 7, 2, 2, 8, 4, 8, 6, 8, 2, 2, 0, 7, 2, 2, 9, 4, 6, 0, 1, 5, 9, 8, 2, 4, 4, 1, 5, 9, 1, 2, 2, 8, 2, 9, 1, 2, 4, 3, 5, 8, 3, 7, 2, 1, 3, 7, 1, 8, 3, 3, 9, 0, 8, 4, 6, 4, 0, 4, 0, 1, 1, 4, 2, 1, 2, 1, 5, 6, 1, 6, 5, 9, 6, 3, 7, 9
Offset: 0

Author

Daniel Hoyt, Aug 24 2025

Keywords

Comments

This constant has an interesting simple continued fraction representation.
359/720 approximates this constant to 19 significant digits.

Examples

			0.498611111111111111127228486822072294...
		

Crossrefs

Cf. A386384 (continued fraction expansion).

Programs

  • Mathematica
    RealDigits[Sum[(-1)^k/(k!)!, {k, 0, 6}], 10, 100][[1]]
  • PARI
    suminf(k=0, (-1)^k/(k!)!)

A386385 Period-32 block rewriting of A157196 (blocks 11 and 2): for block index i, keep if i mod 32 in {3,4,11,12,15,16,19,20,27,28}, else swap 11<->2.

Original entry on oeis.org

2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1
Offset: 0

Author

Daniel Hoyt, Aug 17 2025

Keywords

Comments

The runs of '2', and '1,1' are interleaved in the continued fraction expansion of Sum_{k>=0} (-1)^k/(k!)! (A386384).
Parse A157196 into blocks A = 11 and B = 2, and index the blocks i = 0,1,2,.... For each block i, keep it when i mod 32 in {3, 4, 11, 12, 15, 16, 19, 20, 27, 28}; otherwise swap A <-> B (i.e, swap 1,1 <-> 2) at all other i. Finally expand blocks by A -> 1,1 and B -> 2.
We index the blocks starting at i=0. "Keep" residues are {3,4,11,12,15,16,19,20,27,28} (mod 32); at all other residues we swap (11) <-> (2). After that, expand by (11)->1,1 and (2)->2.
Each block is handled independently by its own i mod 32.

Examples

			Starting from A157196 parsed as (11)(2)(11)(11)(2)(11)(2)... = ABAABAB...
i=0: (11), residue 0 not in keep set -> swap to (2)  -> output 2.
i=1: (2),  residue 1 not in keep set -> swap to (11) -> output 1, 1.
i=2: (11), residue 2 not in keep set -> swap to (2)  -> output 2.
i=3: (11), residue 3 is in keep set  -> keep (11)    -> output 1, 1.
i=4: (2),  residue 4 is in keep set  -> keep (2)     -> output 2.
i=5: (11), residue 5 not in keep set -> swap to (2)  -> output 2.
i=6: (2),  residue 6 not in keep set -> swap to (11) -> output 1, 1.
Concatenating: 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, ...
		

Crossrefs

Programs

  • Python
    def a386385(n):
        m=n+1
        if m<=0: raise ValueError("n>=0")
        M=0x18199818
        def run(N,mode):
            s=[1,1];h=2;p=0;k=0;c=0;y='B'
            def g(u):
                nonlocal s,h
                while len(s)>(k&31))&1) else ('A' if xb=='B' else 'B')
                c += 2 if y=='A' else 1; k+=1
            return c if mode==0 else y
        lo,hi=0,m
        while lo=m: hi=md
            else: lo=md+1
        return 2 if run(lo,1)=='B' else 1

A363841 Continued fraction expansion of Sum_{k>=0} 1/(k!)!^2.

Original entry on oeis.org

2, 3, 1, 32399, 4, 1432456210278611587930429493084159999, 1, 3, 32399, 1, 3
Offset: 0

Author

Daniel Hoyt, Jun 23 2023

Keywords

Comments

In general, sums of the form Sum_{k>=0} 1/(k!)!^t, t > 1 in N, have the following continued fraction expansion formulas:
The first term is always 2.
Let P(k) = (((k+1)!)! / ((k!)!)^2)^t - 1.
Take the sequence A157196 and replace the runs of '1,1' with 2^t - 1, the odd occurring runs of '2' with 2^t, and the even occurring runs of '2' with 2^t - 2. Finally interleave the modified sequence with a string of 1's and let it be called f(n). To get the continued fraction expansion, interleave the n-th runs of '2^t', '2^t - 1, 1', '1, 2^t - 1' and '1, 2^t - 2, 1' in f(n), and P(A001511(n)+1).
The next term a(11) has 303 digits. - Stefano Spezia, Jun 24 2023

Crossrefs

Cf. A363842 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sum[1/(k!)!^2, {k, 0, 6}], 21]

Formula

Take the sequence A157196 and replace the runs of '1,1' with '3'. Then replace the odd occurring runs of '2' with '4'. Finally interleave the modified sequence with a string of 1's and let it be called f(n). To get the continued fraction expansion, interleave between the n-th runs of '4', '3, 1', '1, 3' and '1, 2, 1' in f(n), and P(A001511(n)+1).

A363842 Decimal expansion of Sum_{k>=0} 1/(k!)!^2.

Original entry on oeis.org

2, 2, 5, 0, 0, 0, 1, 9, 2, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 4, 9, 4, 3, 3, 7, 7, 0, 1, 0, 4, 2, 8, 4, 9, 4, 1, 6, 2, 2, 0, 3, 5, 2, 4, 4, 3, 4, 4, 8, 0, 7, 7, 5, 8, 5, 2, 2, 5
Offset: 1

Author

Daniel Hoyt, Jun 23 2023

Keywords

Comments

1166401/518400 approximates this constant to 48 significant digits.

Examples

			2.25000192901234567901234567901234567901234567901...
		

Crossrefs

Cf. A363841 (continued fraction).
Cf. A336686.

Programs

  • Mathematica
    RealDigits[Sum[1/(k!)!^2, {k, 0, 4}], 10, 100][[1]]
  • PARI
    suminf(k=0, 1/k!!^2)

A363704 Decimal expansion of lim_{x -> infinity} ((Sum_{k>=1} (k^(1/k^(1 + 1/x)) - 1)) - x^2).

Original entry on oeis.org

9, 8, 8, 5, 4, 9, 6, 0, 1, 1, 4, 2, 2, 6, 8, 7, 5, 0, 6, 4, 4, 7, 5, 4, 1, 0, 8, 3, 3, 9, 9, 7, 1, 2, 6, 4, 4, 2, 1, 9, 9, 8, 6, 8, 3, 8, 0, 1, 5, 2, 3, 8, 8, 1, 7, 3, 5, 4, 3, 0, 7, 0, 6, 7, 9, 5, 2, 2, 3, 5, 4, 8, 4, 9, 2, 9, 2, 2, 1, 6, 2, 6, 9, 5, 3, 2, 6
Offset: 0

Author

Daniel Hoyt, Jun 16 2023

Keywords

Comments

That this constant is less than one allows Sum_{k>=1} (k^(1/k^(1 + 1/x)) - 1) = floor(x^2), when x is the square root of any natural number greater than 1.
The limit converges slowly.

Examples

			0.98854960114226875064475410833997126442199868380...
		

Programs

  • Mathematica
    digits = 120; d = 1; j = 2; s = StieltjesGamma[1]; While[Abs[d] > 10^(-digits - 5), d = (-1)^j / j! * Derivative[j][Zeta][j]; s += d; j++]; RealDigits[s, 10, 120][[1]] (* Vaclav Kotesovec, Jun 17 2023 *)
  • Python
    # Gives 14 correct digits
    from mpmath import stieltjes,fac
    def limgen(n):
        terms = []
        for y in range(3, n):
            for x in range(y, n):
                terms.append((((-1)**y)*stieltjes(x)*(x-(y-1))**(y-2))/(fac(x-(y-2))*fac(y-2)))
        n,o_sum = 2,0
        while True:
            n_term = 1/((n-1)**(n+1))
            n_sum = o_sum + n_term
            if o_sum == n_sum:
                break
            o_sum = n_sum
            n += 1
        return sum(terms) + 0.5 - stieltjes(0) + n_sum
    print(str(limgen(60))[:-1])

Formula

Equals 1/2 - A001620 + Sum_{k>=2} (1/(k-1)^(k+1)) + Sum_{k>=3} Sum_{n>=k} (((-1)^k)*Stieltjes(n)*(n-k+1)^(k-2))/((n-k+2)!*(k-2)!).
From Vaclav Kotesovec, Jun 17 2023: (Start)
Equals lim_{n->oo} (Sum_{m=1..n} m^(1/m)) - n - log(n)^2/2.
Equals sg1 + Sum_{k>=2} (-1)^k / k! * k-th derivative of zeta(k), where sg1 is the first Stieltjes constant (see A082633). (End)

A351885 Decimal expansion of lim_{n -> infinity} (Sum_{x=1..n} x^(1/x) - Integral_{k=0..n} x^(1/x) dx).

Original entry on oeis.org

5, 6, 8, 1, 8, 0, 0, 1, 2, 3, 5, 9, 0, 6, 6, 4, 5, 2, 5, 1, 2, 3, 1, 4, 7, 2, 6, 5, 2, 1, 8, 8, 3, 0, 7, 4, 4, 4, 0, 4, 4, 9, 1, 3, 0, 5, 1, 4, 4, 0, 1, 4, 8, 6, 5, 9, 0, 0, 7, 6, 6, 3, 3, 2, 5, 1, 5, 8, 3, 4, 2, 7, 6, 8, 0, 7, 3, 5, 1, 0, 0, 4, 2, 2, 1, 7, 5
Offset: 0

Author

Daniel Hoyt, Feb 23 2022

Keywords

Comments

The limiting difference between the integral and sum of x^(1/x). The limit converges slowly.

Examples

			0.5681800123590664525123147265218830744...
		

Crossrefs

Programs

  • Python
    # Gives 15 correct digits
    from mpmath import stieltjes,fac,quad
    def limgen(n):
        terms = []
        for y in range(3, n):
            for x in range(y, n):
                terms.append((((-1)**y)*stieltjes(x)*(x-(y-1))**(y-2))/(fac(x-(y-2))*fac(y-2)))
        return terms
    f = lambda x: x**(1/x)
    int01 = quad(f, [0,1])
    limit = sum(limgen(60)) + 1.5 - stieltjes(0) - int01
    print(limit)

Formula

Equals 3/2 - A001620 - A175999 + Sum_{k>=3} Sum_{n>=k} (((-1)^k)*Stieltjes(n)*(n-k+1)^(k-2))/((n-k+2)!*(k-2)!).

A350862 Decimal expansion of Sum_{k>=1} (k^(1/k^(1 + 1/1111)) - 1).

Original entry on oeis.org

1, 2, 3, 4, 3, 2, 1, 9, 8, 2, 8, 1, 3, 8, 9, 0, 9, 3, 3, 3, 6, 8, 6, 4, 2, 4, 4, 0, 0, 4, 8, 8, 7, 7, 4, 8, 6, 8, 2, 6, 9, 1, 2, 5, 8, 7, 7, 1, 5, 4, 8, 3, 8, 1, 2, 6, 2, 3, 5, 0, 2, 6, 6, 6, 4, 0, 7, 4, 2, 2, 6, 9, 9, 0, 2, 7, 0, 3, 0, 1, 1, 3, 8, 2, 7, 7, 9
Offset: 7

Author

Daniel Hoyt, Jan 19 2022

Keywords

Comments

If x is a whole number greater than 1, the Sum_{k>=1} (k^(1/k^(1 + 1/sqrt(x))) - 1) = x + C, where C is a constant less than 1.
The above relation was tested for all 1 < x < 10^7.
If x = 1, the sum is A329117.
This sum demonstrates this relationship: setting sqrt(x) = 1111 generates the sum 1111^2 + C or 1234321 + C. Another example would be Sum_{k>=1} (k^(1/k^(1 + 1/sqrt(1729))) - 1) = 1729.84841430674....
Evaluating the sum at larger x values converges slower and slower. Monotonically changing extrapolation methods such as Richardson's Extrapolation must be used to compute these values.
Since the output (x + C) will be the square of the input (sqrt(x)) plus a constant less than 1, this implies that Sum_{k>=1} (k^(1/k^(1 + 1/sqrt(x))) - 1) diverges as x tends to infinity, or simplified to Sum_{k>=1} (k^(1/k) - 1).

Examples

			1234321.98281389093336864244004887748682691258771548...
		

Crossrefs

Programs

  • Mathematica
    digits = 120; d = 1; j = 1; s = 0; While[Abs[d] > 10^(-digits - 5), d = (-1)^j/j!*Derivative[j][Zeta][(1 + 1/1111)*j]; s += d; j++]; RealDigits[s, 10, 120][[1]] (* Vaclav Kotesovec, Jun 18 2023 *)
  • PARI
    sumpos(k=1, k^(1/(k^(1 + 1/1111))) - 1)

A344906 Decimal expansion of Sum_{k>=0} arctan(1/2^k).

Original entry on oeis.org

1, 7, 4, 3, 2, 8, 6, 6, 2, 0, 4, 7, 2, 3, 4, 0, 0, 0, 3, 5, 0, 4, 3, 3, 7, 6, 5, 6, 1, 3, 6, 4, 1, 6, 2, 8, 5, 8, 1, 3, 8, 3, 1, 1, 8, 5, 4, 2, 8, 2, 0, 6, 5, 2, 3, 0, 0, 4, 5, 6, 9, 5, 7, 2, 0, 5, 6, 5, 5, 1, 7, 6, 5, 2, 2, 7, 4, 9, 2, 0, 5, 5, 8, 1, 6, 5, 8, 6, 8
Offset: 1

Author

Daniel Hoyt, Jun 01 2021

Keywords

Comments

This number can be interpreted geometrically as the angle in radians of a fan made of stacked right triangles, with the length to height ratio doubling each successive triangle as seen in the illustration.
Since this angle exceeds Pi/2, the set of rotation angles used in the CORDIC algorithm covers an angle range sufficient to compute sine and cosine for any angle between 0 and Pi/2. This means the algorithm can converge to any angle in that range through appropriate combinations of these basic rotations. - Daniel Hoyt, Oct 25 2024

Examples

			1.743286620472340003...
		

Crossrefs

Programs

  • Maple
    Digits:= 140:
    evalf(sum(arccot(2^k), k=0..infinity));  # Alois P. Heinz, Jun 02 2021
  • PARI
    suminf(k=0, atan(1/2^k))
    
  • PARI
    sumalt(k=1, ((-1)^(k+1))*2^(2*k-1)/((2^(2*k-1)-1)*(2*k-1)))

Formula

Equals Sum_{k>=1} (-1)^(k+1)*2^(2*k-1)/((2^(2*k-1)-1)*(2*k-1)).

A336810 Continued fraction expansion of Sum_{k>=0} 1/(k!)!.

Original entry on oeis.org

2, 1, 1, 179, 2, 1196852626800230399, 1, 1, 179, 1, 1
Offset: 0

Author

Daniel Hoyt, Nov 20 2020

Keywords

Comments

a(11), a(21), and a(41) have 152, 1349, and 12981 digits, respectively.

Crossrefs

Cf. A336686 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sum[1/(k!)!, {k, 0, 6}], 21] (* Amiram Eldar, Nov 22 2020 *)
  • PARI
    contfrac(suminf(k=0, 1/(k!)!))

Formula

The peak terms have the form ((k+1)!)! / ((k!)!)^2 - 1. - Georg Fischer, Oct 19 2022 [pers. comm. with J. Shallit]
Let P(k) = ((k+1)!)! / ((k!)!)^2 - 1. After the first term, the rest of the sequence is an interleaving between the n-th runs of '1, 1' and '2' in A157196, and P(A001511(n)+1). - Daniel Hoyt, Jun 26 2023