cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A098572 a(n) = floor(Sum_{m=1..n} m^(1/m)).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 16 2004

Keywords

Examples

			floor(1^(1/1)+2^(1/2)+3^(1/3))=3 and floor(1^(1/1)+2^(1/2)+3^(1/3)+4^(1/4))=5.
		

Crossrefs

Programs

  • Magma
    [Floor((&+[k^(1/k): k in [1..n]])): n in [1..30]]; // G. C. Greubel, Feb 03 2018
  • Maple
    A098572 := proc(p)
        option remember;
        add(root[i](i),i=1..p) ;
        floor(%) ;
    end proc:
  • Mathematica
    Table[Floor[Sum[k^(1/k), {k, 1, n}]], {n, 1, 50}] (* G. C. Greubel, Feb 03 2018 *)
  • PARI
    for(n=1,30, print1(floor(sum(k=1,n, k^(1/k))), ", ")) \\ G. C. Greubel, Feb 03 2018
    

Formula

a(n) ~ n + log(n)^2/2 + c, where c = A363704 = sg1 + Sum_{k>=2} (-1)^k / k! * k-th derivative of zeta(k) = 0.9885496011422687506447541083399712644219986838..., where sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Jun 17 2023

A350862 Decimal expansion of Sum_{k>=1} (k^(1/k^(1 + 1/1111)) - 1).

Original entry on oeis.org

1, 2, 3, 4, 3, 2, 1, 9, 8, 2, 8, 1, 3, 8, 9, 0, 9, 3, 3, 3, 6, 8, 6, 4, 2, 4, 4, 0, 0, 4, 8, 8, 7, 7, 4, 8, 6, 8, 2, 6, 9, 1, 2, 5, 8, 7, 7, 1, 5, 4, 8, 3, 8, 1, 2, 6, 2, 3, 5, 0, 2, 6, 6, 6, 4, 0, 7, 4, 2, 2, 6, 9, 9, 0, 2, 7, 0, 3, 0, 1, 1, 3, 8, 2, 7, 7, 9
Offset: 7

Views

Author

Daniel Hoyt, Jan 19 2022

Keywords

Comments

If x is a whole number greater than 1, the Sum_{k>=1} (k^(1/k^(1 + 1/sqrt(x))) - 1) = x + C, where C is a constant less than 1.
The above relation was tested for all 1 < x < 10^7.
If x = 1, the sum is A329117.
This sum demonstrates this relationship: setting sqrt(x) = 1111 generates the sum 1111^2 + C or 1234321 + C. Another example would be Sum_{k>=1} (k^(1/k^(1 + 1/sqrt(1729))) - 1) = 1729.84841430674....
Evaluating the sum at larger x values converges slower and slower. Monotonically changing extrapolation methods such as Richardson's Extrapolation must be used to compute these values.
Since the output (x + C) will be the square of the input (sqrt(x)) plus a constant less than 1, this implies that Sum_{k>=1} (k^(1/k^(1 + 1/sqrt(x))) - 1) diverges as x tends to infinity, or simplified to Sum_{k>=1} (k^(1/k) - 1).

Examples

			1234321.98281389093336864244004887748682691258771548...
		

Crossrefs

Programs

  • Mathematica
    digits = 120; d = 1; j = 1; s = 0; While[Abs[d] > 10^(-digits - 5), d = (-1)^j/j!*Derivative[j][Zeta][(1 + 1/1111)*j]; s += d; j++]; RealDigits[s, 10, 120][[1]] (* Vaclav Kotesovec, Jun 18 2023 *)
  • PARI
    sumpos(k=1, k^(1/(k^(1 + 1/1111))) - 1)

A363704 Decimal expansion of lim_{x -> infinity} ((Sum_{k>=1} (k^(1/k^(1 + 1/x)) - 1)) - x^2).

Original entry on oeis.org

9, 8, 8, 5, 4, 9, 6, 0, 1, 1, 4, 2, 2, 6, 8, 7, 5, 0, 6, 4, 4, 7, 5, 4, 1, 0, 8, 3, 3, 9, 9, 7, 1, 2, 6, 4, 4, 2, 1, 9, 9, 8, 6, 8, 3, 8, 0, 1, 5, 2, 3, 8, 8, 1, 7, 3, 5, 4, 3, 0, 7, 0, 6, 7, 9, 5, 2, 2, 3, 5, 4, 8, 4, 9, 2, 9, 2, 2, 1, 6, 2, 6, 9, 5, 3, 2, 6
Offset: 0

Views

Author

Daniel Hoyt, Jun 16 2023

Keywords

Comments

That this constant is less than one allows Sum_{k>=1} (k^(1/k^(1 + 1/x)) - 1) = floor(x^2), when x is the square root of any natural number greater than 1.
The limit converges slowly.

Examples

			0.98854960114226875064475410833997126442199868380...
		

Crossrefs

Programs

  • Mathematica
    digits = 120; d = 1; j = 2; s = StieltjesGamma[1]; While[Abs[d] > 10^(-digits - 5), d = (-1)^j / j! * Derivative[j][Zeta][j]; s += d; j++]; RealDigits[s, 10, 120][[1]] (* Vaclav Kotesovec, Jun 17 2023 *)
  • Python
    # Gives 14 correct digits
    from mpmath import stieltjes,fac
    def limgen(n):
        terms = []
        for y in range(3, n):
            for x in range(y, n):
                terms.append((((-1)**y)*stieltjes(x)*(x-(y-1))**(y-2))/(fac(x-(y-2))*fac(y-2)))
        n,o_sum = 2,0
        while True:
            n_term = 1/((n-1)**(n+1))
            n_sum = o_sum + n_term
            if o_sum == n_sum:
                break
            o_sum = n_sum
            n += 1
        return sum(terms) + 0.5 - stieltjes(0) + n_sum
    print(str(limgen(60))[:-1])

Formula

Equals 1/2 - A001620 + Sum_{k>=2} (1/(k-1)^(k+1)) + Sum_{k>=3} Sum_{n>=k} (((-1)^k)*Stieltjes(n)*(n-k+1)^(k-2))/((n-k+2)!*(k-2)!).
From Vaclav Kotesovec, Jun 17 2023: (Start)
Equals lim_{n->oo} (Sum_{m=1..n} m^(1/m)) - n - log(n)^2/2.
Equals sg1 + Sum_{k>=2} (-1)^k / k! * k-th derivative of zeta(k), where sg1 is the first Stieltjes constant (see A082633). (End)
Showing 1-3 of 3 results.