cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351885 Decimal expansion of lim_{n -> infinity} (Sum_{x=1..n} x^(1/x) - Integral_{k=0..n} x^(1/x) dx).

Original entry on oeis.org

5, 6, 8, 1, 8, 0, 0, 1, 2, 3, 5, 9, 0, 6, 6, 4, 5, 2, 5, 1, 2, 3, 1, 4, 7, 2, 6, 5, 2, 1, 8, 8, 3, 0, 7, 4, 4, 4, 0, 4, 4, 9, 1, 3, 0, 5, 1, 4, 4, 0, 1, 4, 8, 6, 5, 9, 0, 0, 7, 6, 6, 3, 3, 2, 5, 1, 5, 8, 3, 4, 2, 7, 6, 8, 0, 7, 3, 5, 1, 0, 0, 4, 2, 2, 1, 7, 5
Offset: 0

Views

Author

Daniel Hoyt, Feb 23 2022

Keywords

Comments

The limiting difference between the integral and sum of x^(1/x). The limit converges slowly.

Examples

			0.5681800123590664525123147265218830744...
		

Crossrefs

Programs

  • Python
    # Gives 15 correct digits
    from mpmath import stieltjes,fac,quad
    def limgen(n):
        terms = []
        for y in range(3, n):
            for x in range(y, n):
                terms.append((((-1)**y)*stieltjes(x)*(x-(y-1))**(y-2))/(fac(x-(y-2))*fac(y-2)))
        return terms
    f = lambda x: x**(1/x)
    int01 = quad(f, [0,1])
    limit = sum(limgen(60)) + 1.5 - stieltjes(0) - int01
    print(limit)

Formula

Equals 3/2 - A001620 - A175999 + Sum_{k>=3} Sum_{n>=k} (((-1)^k)*Stieltjes(n)*(n-k+1)^(k-2))/((n-k+2)!*(k-2)!).

A363704 Decimal expansion of lim_{x -> infinity} ((Sum_{k>=1} (k^(1/k^(1 + 1/x)) - 1)) - x^2).

Original entry on oeis.org

9, 8, 8, 5, 4, 9, 6, 0, 1, 1, 4, 2, 2, 6, 8, 7, 5, 0, 6, 4, 4, 7, 5, 4, 1, 0, 8, 3, 3, 9, 9, 7, 1, 2, 6, 4, 4, 2, 1, 9, 9, 8, 6, 8, 3, 8, 0, 1, 5, 2, 3, 8, 8, 1, 7, 3, 5, 4, 3, 0, 7, 0, 6, 7, 9, 5, 2, 2, 3, 5, 4, 8, 4, 9, 2, 9, 2, 2, 1, 6, 2, 6, 9, 5, 3, 2, 6
Offset: 0

Views

Author

Daniel Hoyt, Jun 16 2023

Keywords

Comments

That this constant is less than one allows Sum_{k>=1} (k^(1/k^(1 + 1/x)) - 1) = floor(x^2), when x is the square root of any natural number greater than 1.
The limit converges slowly.

Examples

			0.98854960114226875064475410833997126442199868380...
		

Crossrefs

Programs

  • Mathematica
    digits = 120; d = 1; j = 2; s = StieltjesGamma[1]; While[Abs[d] > 10^(-digits - 5), d = (-1)^j / j! * Derivative[j][Zeta][j]; s += d; j++]; RealDigits[s, 10, 120][[1]] (* Vaclav Kotesovec, Jun 17 2023 *)
  • Python
    # Gives 14 correct digits
    from mpmath import stieltjes,fac
    def limgen(n):
        terms = []
        for y in range(3, n):
            for x in range(y, n):
                terms.append((((-1)**y)*stieltjes(x)*(x-(y-1))**(y-2))/(fac(x-(y-2))*fac(y-2)))
        n,o_sum = 2,0
        while True:
            n_term = 1/((n-1)**(n+1))
            n_sum = o_sum + n_term
            if o_sum == n_sum:
                break
            o_sum = n_sum
            n += 1
        return sum(terms) + 0.5 - stieltjes(0) + n_sum
    print(str(limgen(60))[:-1])

Formula

Equals 1/2 - A001620 + Sum_{k>=2} (1/(k-1)^(k+1)) + Sum_{k>=3} Sum_{n>=k} (((-1)^k)*Stieltjes(n)*(n-k+1)^(k-2))/((n-k+2)!*(k-2)!).
From Vaclav Kotesovec, Jun 17 2023: (Start)
Equals lim_{n->oo} (Sum_{m=1..n} m^(1/m)) - n - log(n)^2/2.
Equals sg1 + Sum_{k>=2} (-1)^k / k! * k-th derivative of zeta(k), where sg1 is the first Stieltjes constant (see A082633). (End)
Showing 1-2 of 2 results.