cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A098573 Positive integers not appearing in sequence A098572, which calculates the values of floor(sum(m^(1/m),n=1..m)).

Original entry on oeis.org

4, 8, 12, 17, 24, 32, 41, 52, 66, 82, 101, 124, 150, 181, 217, 259, 307, 362, 426, 500, 583, 679, 788, 911, 1051, 1209, 1387, 1588, 1814, 2067, 2351, 2668, 3022, 3418, 3858, 4347, 4891, 5494, 6162, 6902, 7719, 8622, 9618, 10715, 11923, 13252, 14711, 16314
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 16 2004

Keywords

Examples

			floor(1^(1/1)+2^(1/2)+3^(1/3))=3, floor(1^(1/1)+2^(1/2)+3^(1/3)+4^(1/4))=5 and so 4 is a member of this sequence.
		

Crossrefs

Cf. A098572.

Programs

  • Maple
    ans:=[]: a:=0: last:=0: n:=1: do: a:=a+evalf(n^(1/n),50): if floor(a)-last>1 then ans:=[op(ans),floor(a)-1]: fi: last:=floor(a): n:=n+1: od:

A133497 Numbers k such that A098572(k) - A098572(k-1) = 2.

Original entry on oeis.org

4, 7, 10, 14, 20, 27, 35, 45, 58, 73, 91, 113, 138, 168, 203, 244, 291, 345, 408, 481, 563, 658, 766, 888, 1027, 1184, 1361, 1561, 1786, 2038, 2321, 2637, 2990, 3385, 3824, 4312, 4855, 5457, 6124, 6863, 7679, 8581, 9576, 10672, 11879, 13207, 14666, 16267, 18024, 19949
Offset: 1

Views

Author

Philippe Lallouet (philip.lallouet(AT)orange.fr), Dec 01 2007

Keywords

Examples

			With b(k) = A098572(k): b(1) = 1, b(2) = 2, b(3) = 3, b(4) = 5, hence b(4)-b(3) = 2 and a(1) = 4.
		

Crossrefs

Cf. A098572.

Programs

  • Maple
    for n from 1 do
        if A098572(n)-A098572(n-1)= 2 then
            printf("%d,\n",n) ;
        end if;
    end do: # R. J. Mathar, Mar 13 2015
  • PARI
    (A=0);for(p=1,1000,B=A;A=B+p^(1/p);if(floor(A)-floor(B)-1;print(p)))

Extensions

More terms from Hugo Pfoertner, Jul 04 2021

A329117 Decimal expansion of Sum_{k>=1} (k^(1/k^2) - 1).

Original entry on oeis.org

9, 7, 1, 4, 9, 9, 0, 3, 4, 2, 8, 3, 3, 0, 8, 7, 5, 7, 2, 2, 2, 6, 2, 5, 0, 6, 2, 3, 1, 4, 7, 5, 4, 5, 8, 0, 0, 2, 2, 5, 5, 1, 0, 1, 4, 8, 9, 7, 0, 2, 3, 9, 8, 4, 2, 9, 0, 8, 9, 0, 4, 2, 5, 5, 9, 4, 0, 8, 4, 1, 1, 7, 0, 0, 9, 9, 5, 5, 4, 2, 4, 3, 7, 3, 0
Offset: 0

Views

Author

Daniel Hoyt, Nov 05 2019

Keywords

Examples

			0.971499034283308757222625062314754580022...
		

Crossrefs

Programs

  • Mathematica
    digits = 120; d = 1; j = 2; s = Pi^2 * (2*Log[Glaisher] - Log[2*Pi]/6 - EulerGamma/6); While[Abs[d] > 10^(-digits - 5), d = (-1)^j/j!*Derivative[j][Zeta][2*j]; s += d; j++]; RealDigits[s, 10, 120][[1]] (* Vaclav Kotesovec, Jun 18 2023 *)
  • PARI
    sumpos(k=1, k^(1/k^2) - 1) \\ Michel Marcus, Nov 05 2019

Formula

Equals Sum_{k>=1} (-1)^k / k! * k-th derivative of zeta(2*k). - Vaclav Kotesovec, Jun 18 2023

A363704 Decimal expansion of lim_{x -> infinity} ((Sum_{k>=1} (k^(1/k^(1 + 1/x)) - 1)) - x^2).

Original entry on oeis.org

9, 8, 8, 5, 4, 9, 6, 0, 1, 1, 4, 2, 2, 6, 8, 7, 5, 0, 6, 4, 4, 7, 5, 4, 1, 0, 8, 3, 3, 9, 9, 7, 1, 2, 6, 4, 4, 2, 1, 9, 9, 8, 6, 8, 3, 8, 0, 1, 5, 2, 3, 8, 8, 1, 7, 3, 5, 4, 3, 0, 7, 0, 6, 7, 9, 5, 2, 2, 3, 5, 4, 8, 4, 9, 2, 9, 2, 2, 1, 6, 2, 6, 9, 5, 3, 2, 6
Offset: 0

Views

Author

Daniel Hoyt, Jun 16 2023

Keywords

Comments

That this constant is less than one allows Sum_{k>=1} (k^(1/k^(1 + 1/x)) - 1) = floor(x^2), when x is the square root of any natural number greater than 1.
The limit converges slowly.

Examples

			0.98854960114226875064475410833997126442199868380...
		

Crossrefs

Programs

  • Mathematica
    digits = 120; d = 1; j = 2; s = StieltjesGamma[1]; While[Abs[d] > 10^(-digits - 5), d = (-1)^j / j! * Derivative[j][Zeta][j]; s += d; j++]; RealDigits[s, 10, 120][[1]] (* Vaclav Kotesovec, Jun 17 2023 *)
  • Python
    # Gives 14 correct digits
    from mpmath import stieltjes,fac
    def limgen(n):
        terms = []
        for y in range(3, n):
            for x in range(y, n):
                terms.append((((-1)**y)*stieltjes(x)*(x-(y-1))**(y-2))/(fac(x-(y-2))*fac(y-2)))
        n,o_sum = 2,0
        while True:
            n_term = 1/((n-1)**(n+1))
            n_sum = o_sum + n_term
            if o_sum == n_sum:
                break
            o_sum = n_sum
            n += 1
        return sum(terms) + 0.5 - stieltjes(0) + n_sum
    print(str(limgen(60))[:-1])

Formula

Equals 1/2 - A001620 + Sum_{k>=2} (1/(k-1)^(k+1)) + Sum_{k>=3} Sum_{n>=k} (((-1)^k)*Stieltjes(n)*(n-k+1)^(k-2))/((n-k+2)!*(k-2)!).
From Vaclav Kotesovec, Jun 17 2023: (Start)
Equals lim_{n->oo} (Sum_{m=1..n} m^(1/m)) - n - log(n)^2/2.
Equals sg1 + Sum_{k>=2} (-1)^k / k! * k-th derivative of zeta(k), where sg1 is the first Stieltjes constant (see A082633). (End)

A363716 Decimal expansion of Sum_{k>=2} (1/k!) * k-th derivative of zeta(k).

Original entry on oeis.org

9, 3, 6, 1, 9, 1, 3, 1, 9, 4, 0, 4, 4, 8, 7, 0, 5, 1, 6, 4, 1, 1, 9, 2, 0, 3, 4, 8, 0, 3, 1, 3, 4, 4, 8, 8, 2, 4, 7, 6, 7, 0, 6, 2, 7, 4, 0, 7, 2, 8, 3, 2, 7, 8, 8, 4, 3, 6, 1, 1, 9, 4, 5, 9, 9, 5, 8, 4, 7, 1, 7, 8, 9, 1, 6, 3, 7, 0, 0, 5, 6, 4, 9, 3, 3, 6, 3, 3, 8, 3, 9, 6, 2, 3, 6, 1, 1, 4, 5, 7, 2, 4, 8, 0, 2, 4
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 17 2023

Keywords

Examples

			0.9361913194044870516411920348031344882476706274072832788436119459958471789...
		

Crossrefs

Programs

  • Mathematica
    digits = 120; d = 1; j = 2; s = 0; While[Abs[d] > 10^(-digits - 5), d = 1 / j! * Derivative[j][Zeta][j]; s += d; j++]; RealDigits[s, 10, 120][[1]]

Formula

Equals lim_{n->oo} (Sum_{m=1..n} 1/m^(1/m)) - n + log(n)^2/2 + sg1, where sg1 is the first Stieltjes constant (see A082633).
Showing 1-5 of 5 results.