A334137 a(n) is the multiplicative inverse of A008514(n+1) modulo A008514(n).
0, 10, 19, 267, 338, 1868, 2069, 948, 7796, 5245, 22215, 17198, 3477, 43855, 21272, 95592, 60647, 186753, 135194, 45969, 263049, 139666, 467532, 301563, 55386, 559636, 241005, 948261, 543212, 1508854, 1001903, 318414, 1664590, 828391, 2587041, 1575400, 280143
Offset: 0
Examples
For a(0), compute the inverse of 1^4 + 2^4 mod 0^4 + 1^4 which is 0 mod 1, since everything mod 1 is 0. For a(1), compute the inverse of 2^4 + 3^4 mod 1^4 + 2^4. The inverse of 97 mod 17 (or 12 mod 17) is 10 mod 17 since 10*12 = 120 has remainder 1 mod 17.
Links
- Daniel Hoyt, Table of n, a(n) for n = 0..10000
Programs
-
PARI
f(n) = n^4 + (n+1)^4; a(n) = lift(1/Mod(f(n+1), f(n)));
-
Python
import gmpy2 soc = [] # sum of 4d-centered cubes a=0 b=1 for i in range(100): c = a**4 + b**4 soc.append(c) a += 1 b += 1 A334137 = [] for i in range(len(soc)-1): c = gmpy2.invert(soc[i+1], soc[i]) A334137.append(int(c)) print(', '.join([str(x) for x in A334137]))