A363269 Positive squares (A000290) alternating with positive square pyramidal numbers (A000330).
1, 1, 4, 5, 9, 14, 16, 30, 25, 55, 36, 91, 49, 140, 64, 204, 81, 285, 100, 385, 121, 506, 144, 650, 169, 819, 196, 1015, 225, 1240, 256, 1496, 289, 1785, 324, 2109, 361, 2470, 400, 2870, 441, 3311, 484, 3795, 529, 4324, 576, 4900, 625, 5525, 676, 6201, 729
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-6,0,4,0,-1).
Programs
-
Mathematica
c[1] = 1; c[2] = 1; c[n_] := If[OddQ[n], c[n - 2] + n, c[n - 2] + c[n - 1]] Table[c[n], {n, 1, 120}]
-
PARI
a(n) = if(n%2, (n+1)^2/4, n*(n+1)*(n+2)/24); \\ Kevin Ryde, Jun 10 2023
Formula
a(n) = 4*a(n-2) - 6*a(n-4) + 4*a(n-6) - a(n-8).
G.f.: x*(1 + x + x^3 - x^4)/(-1 + x^2)^4.
E.g.f.: ((18*x + 6*x^2)*cosh(x) + (6 + 6*x + 6*x^2 + x^3)*sinh(x))/24. - Stefano Spezia, Jun 10 2023
48*a(n) = (n+1) * (n^2 +(-1)^n*n^2 -4*(-1)^n*n +8*n -6*(-1)^n +6). - R. J. Mathar, Jun 22 2023
Comments