cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A363267 Squares (A000290) alternating with centered squares (A001844).

Original entry on oeis.org

1, 1, 4, 5, 9, 13, 16, 25, 25, 41, 36, 61, 49, 85, 64, 113, 81, 145, 100, 181, 121, 221, 144, 265, 169, 313, 196, 365, 225, 421, 256, 481, 289, 545, 324, 613, 361, 685, 400, 761, 441, 841, 484, 925, 529, 1013, 576, 1105, 625, 1201, 676, 1301, 729, 1405, 784
Offset: 1

Views

Author

Clark Kimberling, May 24 2023

Keywords

Comments

This is a linear recurrence sequence. If the terms are arranged in nondecreasing order, the result, A363319, is linearly recurrent. If the terms are arranged in increasing order, so that there are no duplicates, the result, A363282, is not linearly recurrent.

Crossrefs

Programs

  • Mathematica
    c[1] = 1; c[2] = 1;
    c[n_] := If[OddQ[n], c[n - 2] + n, 2 c[n - 1] - n + 1]
    Table[c[n], {n, 1, 120}]

Formula

a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6).
G.f.: x*(-1 - x - x^2 - 2 x^3 - x^5)/(-1 + x^2)^3.
a(n+1) = n/2+3*n^2/8+3/4+(-1)^n*(1/4+n/2-n^2/8). - R. J. Mathar, Jun 15 2023

A363282 Squares (A000290) and centered squares (A001844), in increasing order (i.e., sorted and without duplicates).

Original entry on oeis.org

1, 4, 5, 9, 13, 16, 25, 36, 41, 49, 61, 64, 81, 85, 100, 113, 121, 144, 145, 169, 181, 196, 221, 225, 256, 265, 289, 313, 324, 361, 365, 400, 421, 441, 481, 484, 529, 545, 576, 613, 625, 676, 685, 729, 761, 784, 841, 900, 925, 961, 1013, 1024, 1089, 1105
Offset: 1

Views

Author

Clark Kimberling, May 25 2023

Keywords

Comments

This sequence consists of the numbers in A363267 arranged in increasing order. Unlike A363267, this is not a linear recurrence sequence; see A363319.

Crossrefs

Programs

  • Mathematica
    c[1] = 1; c[2] = 1;
    c[n_] := If[OddQ[n], c[n - 2] + n, 2 c[n - 1] - n + 1]
    u = Table[c[n], {n, 1, 120}]  (* A363267 *)
    Union[u] (* A363282 *)

Extensions

Definition corrected by N. J. A. Sloane, Jun 12 2023
Showing 1-2 of 2 results.