A352949 Composite numbers of the form 2*k^2 + 29.
1711, 1829, 2077, 2479, 3071, 3901, 5029, 6527, 6757, 7471, 7967, 8479, 10397, 10981, 11581, 14141, 15167, 15517, 15871, 16591, 16957, 17701, 18079, 18847, 19631, 20837, 22927, 23791, 25567, 26941, 27877, 28829, 29797, 30287, 31279, 31781, 32287, 35941, 38117
Offset: 1
Keywords
Examples
a(5) = 3071 = 37*83 = 2*39^2 + 29 is composite and of the form 2*k^2 + 29. a(62) = 68479 = 31*47^2 = 2*185^2 + 29 is composite and of the form 2*k^2 + 29.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000.
- Rémi Guillaume, Examples of prime factorizations and prime factor distributions, and proofs.
Crossrefs
Programs
-
Mathematica
Select[2*Range[150]^2 + 29, CompositeQ] (* Amiram Eldar, Apr 15 2022 *)
-
Python
from sympy import isprime print([m for m in (2*k**2+29 for k in range(140)) if not isprime(m)]) # Michael S. Branicky, Apr 15 2022
Formula
a(n) = 2*(A007642(n))^2 + 29.
Comments