cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Rémi Guillaume

Rémi Guillaume's wiki page.

Rémi Guillaume has authored 3 sequences.

A352949 Composite numbers of the form 2*k^2 + 29.

Original entry on oeis.org

1711, 1829, 2077, 2479, 3071, 3901, 5029, 6527, 6757, 7471, 7967, 8479, 10397, 10981, 11581, 14141, 15167, 15517, 15871, 16591, 16957, 17701, 18079, 18847, 19631, 20837, 22927, 23791, 25567, 26941, 27877, 28829, 29797, 30287, 31279, 31781, 32287, 35941, 38117
Offset: 1

Author

Rémi Guillaume, Apr 10 2022

Keywords

Comments

The first two terms that are not semiprimes, and their prime factorizations, are:
a(62) = 2*185^2 + 29 = 68479 = 31*47*47,
a(63) = 2*187^2 + 29 = 69967 = 31*37*61.
--
No number of the form 2^k*2 + 29 has any prime factor < 29, as can be proved by showing that 2*k^2 + 29 (mod p) takes only nonzero values for all primes p < 29:
+----+-----------------------------------------------+
| p | Residues modulo p of 2*k^2 + 29 |
+----+-----------------------------------------------+
| 2 | 1 |
| 3 | 1, 2 |
| 5 | 1, 2, 4 |
| 7 | 1, 2, 3, 5 |
| 11 | 2, 3, 4, 6, 7, 9 |
| 13 | 1, 3, 5, 8, 9, 10, 11 |
| 17 | 3, 4, 8, 10, 11, 12, 13, 14, 16 |
| 19 | 1, 3, 4, 5, 6, 9, 10, 12, 13, 18 |
| 23 | 1, 6, 7, 8, 9, 10, 12, 14, 15, 18, 19, 22 |
+----+-----------------------------------------------+
Idea and table from Jon E. Schoenfield.
Example of explanation:
if k ~ 0 (mod 3) then k^2 ~ 0 (mod 3), so 2*k^2 + 29 ~ 29 (mod 3) ~ 2 (mod 3);
if k ~ 1 (mod 3) or if k ~ 2 (mod 3) ~ -1 (mod 3), then k^2 ~ 1 (mod 3), so 2*k^2 + 29 ~ 31 (mod 3) ~ 1 (mod 3).
--
A number of the form 2*k^2 + 29 has the prime 29 as a factor iff k ~ 0 (mod 29).

Examples

			a(5) = 3071 = 37*83 = 2*39^2 + 29 is composite and of the form 2*k^2 + 29.
a(62) = 68479 = 31*47^2 = 2*185^2 + 29 is composite and of the form 2*k^2 + 29.
		

Crossrefs

Cf. A007642 for arguments k.
Cf. 2*A353004^2 + 29 = A241554, which is a subsequence, for semiprimes.
Cf. 2*A352800^2 + 29 = A007641 for primes.

Programs

  • Mathematica
    Select[2*Range[150]^2 + 29, CompositeQ] (* Amiram Eldar, Apr 15 2022 *)
  • Python
    from sympy import isprime
    print([m for m in (2*k**2+29 for k in range(140)) if not isprime(m)]) # Michael S. Branicky, Apr 15 2022

Formula

a(n) = 2*(A007642(n))^2 + 29.

A353004 Numbers k such that 2*k^2 + 29 is semiprime.

Original entry on oeis.org

29, 30, 32, 35, 39, 44, 50, 57, 58, 61, 63, 65, 72, 74, 76, 84, 87, 88, 89, 91, 92, 94, 95, 97, 99, 102, 107, 109, 113, 116, 118, 120, 122, 123, 125, 126, 127, 134, 138, 144, 145, 146, 147, 148, 149, 150, 153, 154, 156, 157, 163, 164, 165, 166, 169, 174, 175, 179, 180, 182, 183, 191, 194, 196, 200
Offset: 1

Author

Rémi Guillaume, Apr 15 2022

Keywords

Comments

The least positive k for which 2*k^2 + 29 is neither prime nor semiprime is k = 185, which gives 2*k^2 + 29 = 68479 = 31*47^2.
Includes 29*k if 58*k^2 + 1 is prime; Bunyakovsky's conjecture implies there are infinitely many of these. - Robert Israel, Jul 29 2025

Examples

			a(5) = 39; 2*39^2 + 29 = 3071 = 37*83 is semiprime.
		

Crossrefs

Subsequence of A007642, whose first term not in this sequence is 185.

Programs

  • Maple
    filter:= proc(k) numtheory:-bigomega(2*k^2+29) = 2 end proc;
    select(filter, [$1..1000]); # Robert Israel, Jul 29 2025
  • Mathematica
    Select[Range[200], PrimeOmega[2*#^2 + 29] == 2 &] (* Amiram Eldar, Apr 15 2022 *)
  • PARI
    isok(k) = bigomega(2*k^2+29) == 2; \\ Michel Marcus, Apr 15 2022
  • Python
    from sympy import primeomega
    def semiprime(n): return primeomega(n) == 2
    print([k for k in range(140) if semiprime(2*k**2+29)]) # Michael S. Branicky, Apr 15 2022
    

A352800 Numbers k such that 2*k^2 + 29 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 59, 60, 62, 64, 66, 67, 68, 69, 70, 71, 73, 75, 77, 78, 79, 80, 81, 82
Offset: 1

Author

Sean A. Irvine at the suggestion of Rémi Guillaume, Apr 03 2022

Keywords

Crossrefs

Cf. A007641.

Programs

  • Mathematica
    Select[Range[0, 32260], PrimeQ[2 #^2 + 29] &] (* Robert Price, Apr 15 2025 *)