A353004 Numbers k such that 2*k^2 + 29 is semiprime.
29, 30, 32, 35, 39, 44, 50, 57, 58, 61, 63, 65, 72, 74, 76, 84, 87, 88, 89, 91, 92, 94, 95, 97, 99, 102, 107, 109, 113, 116, 118, 120, 122, 123, 125, 126, 127, 134, 138, 144, 145, 146, 147, 148, 149, 150, 153, 154, 156, 157, 163, 164, 165, 166, 169, 174, 175, 179, 180, 182, 183, 191, 194, 196, 200
Offset: 1
Keywords
Examples
a(5) = 39; 2*39^2 + 29 = 3071 = 37*83 is semiprime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(k) numtheory:-bigomega(2*k^2+29) = 2 end proc; select(filter, [$1..1000]); # Robert Israel, Jul 29 2025
-
Mathematica
Select[Range[200], PrimeOmega[2*#^2 + 29] == 2 &] (* Amiram Eldar, Apr 15 2022 *)
-
PARI
isok(k) = bigomega(2*k^2+29) == 2; \\ Michel Marcus, Apr 15 2022
-
Python
from sympy import primeomega def semiprime(n): return primeomega(n) == 2 print([k for k in range(140) if semiprime(2*k**2+29)]) # Michael S. Branicky, Apr 15 2022
Comments