cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007641 Primes of the form 2*k^2 + 29.

Original entry on oeis.org

29, 31, 37, 47, 61, 79, 101, 127, 157, 191, 229, 271, 317, 367, 421, 479, 541, 607, 677, 751, 829, 911, 997, 1087, 1181, 1279, 1381, 1487, 1597, 1951, 2207, 2341, 2621, 2767, 2917, 3229, 3391, 3557, 3727, 4079, 4261, 4447, 4637, 4831, 5231, 5437
Offset: 1

Views

Author

Keywords

Comments

The first 29 terms of 2*k^2 + 29 (k = 0 to 28) are primes. This was discovered by Adrien-Marie Legendre. The sequence and its first 8 terms appear in the novel Code to Zero by Ken Follett. - Amiram Eldar, Apr 08 2017
Let P(k) = 2*k^2 + 29. The polynomial P(2*k - 28) = 8*k^2 - 224*k + 1597 produces prime values (not distinct) for k = 0 to 28. The polynomial P(3*k - 55) = 18*k^2 - 660*k + 6079 produces distinct prime values for k = 0 to 27. Cf. A050265. - Peter Bala, Apr 16 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ken Follett, Code to Zero, New York: Signet, 2001, p. 18.

Crossrefs

Programs

  • Magma
    [a: n in [0..60] | IsPrime(a) where a is 2*n^2+29]; // Vincenzo Librandi, Mar 20 2013
    
  • Mathematica
    Select[Table[2 n^2 + 29, {n, 0, 70}], PrimeQ] (* Vincenzo Librandi, Mar 20 2013 *)
  • PARI
    list(lim)=my(v=List(),t); for(n=0,sqrtint((lim-29)\2), if(isprime(t=2*n^2+29), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Jan 20 2022

Extensions

Edited by Erich Friedman, Feb 09 2002

A352949 Composite numbers of the form 2*k^2 + 29.

Original entry on oeis.org

1711, 1829, 2077, 2479, 3071, 3901, 5029, 6527, 6757, 7471, 7967, 8479, 10397, 10981, 11581, 14141, 15167, 15517, 15871, 16591, 16957, 17701, 18079, 18847, 19631, 20837, 22927, 23791, 25567, 26941, 27877, 28829, 29797, 30287, 31279, 31781, 32287, 35941, 38117
Offset: 1

Views

Author

Rémi Guillaume, Apr 10 2022

Keywords

Comments

The first two terms that are not semiprimes, and their prime factorizations, are:
a(62) = 2*185^2 + 29 = 68479 = 31*47*47,
a(63) = 2*187^2 + 29 = 69967 = 31*37*61.
--
No number of the form 2^k*2 + 29 has any prime factor < 29, as can be proved by showing that 2*k^2 + 29 (mod p) takes only nonzero values for all primes p < 29:
+----+-----------------------------------------------+
| p | Residues modulo p of 2*k^2 + 29 |
+----+-----------------------------------------------+
| 2 | 1 |
| 3 | 1, 2 |
| 5 | 1, 2, 4 |
| 7 | 1, 2, 3, 5 |
| 11 | 2, 3, 4, 6, 7, 9 |
| 13 | 1, 3, 5, 8, 9, 10, 11 |
| 17 | 3, 4, 8, 10, 11, 12, 13, 14, 16 |
| 19 | 1, 3, 4, 5, 6, 9, 10, 12, 13, 18 |
| 23 | 1, 6, 7, 8, 9, 10, 12, 14, 15, 18, 19, 22 |
+----+-----------------------------------------------+
Idea and table from Jon E. Schoenfield.
Example of explanation:
if k ~ 0 (mod 3) then k^2 ~ 0 (mod 3), so 2*k^2 + 29 ~ 29 (mod 3) ~ 2 (mod 3);
if k ~ 1 (mod 3) or if k ~ 2 (mod 3) ~ -1 (mod 3), then k^2 ~ 1 (mod 3), so 2*k^2 + 29 ~ 31 (mod 3) ~ 1 (mod 3).
--
A number of the form 2*k^2 + 29 has the prime 29 as a factor iff k ~ 0 (mod 29).

Examples

			a(5) = 3071 = 37*83 = 2*39^2 + 29 is composite and of the form 2*k^2 + 29.
a(62) = 68479 = 31*47^2 = 2*185^2 + 29 is composite and of the form 2*k^2 + 29.
		

Crossrefs

Cf. A007642 for arguments k.
Cf. 2*A353004^2 + 29 = A241554, which is a subsequence, for semiprimes.
Cf. 2*A352800^2 + 29 = A007641 for primes.

Programs

  • Mathematica
    Select[2*Range[150]^2 + 29, CompositeQ] (* Amiram Eldar, Apr 15 2022 *)
  • Python
    from sympy import isprime
    print([m for m in (2*k**2+29 for k in range(140)) if not isprime(m)]) # Michael S. Branicky, Apr 15 2022

Formula

a(n) = 2*(A007642(n))^2 + 29.
Showing 1-2 of 2 results.