cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Ant King

Ant King's wiki page.

Ant King has authored 139 sequences. Here are the ten most recent ones:

A228857 Odd primes p > 3 for which 14*p+1 is also prime.

Original entry on oeis.org

5, 17, 47, 53, 59, 83, 107, 113, 149, 167, 173, 239, 269, 353, 419, 443, 449, 503, 509, 563, 587, 599, 647, 659, 677, 719, 797, 827, 929, 947, 977, 983, 1097, 1103, 1109, 1187, 1193, 1223, 1229, 1259, 1289, 1367, 1409, 1427, 1433, 1439, 1493, 1523, 1667
Offset: 1

Author

Ant King, Sep 06 2013

Keywords

Comments

In 1823, Legendre proved that the first case of Fermat’s Last Theorem is true for all exponents that are members of this sequence (see Ribenboim’s reference, p.112).

Examples

			As both 5 and 14*5 + 1 = 71 are prime, then 5 is a member of this sequence.
		

References

  • Paulo Ribenboim; Fermat’s Last Theorem For Amateurs, Springer-Verlag, New York, Inc., (1999).

Crossrefs

Programs

  • Magma
    [p: p in PrimesInInterval(5,2000) |IsPrime(14*p+1)]; // Vincenzo Librandi, Sep 18 2016
    
  • Mathematica
    Select[Prime[Range[3,1667]],PrimeQ[14#+1] &]
  • PARI
    lista(nn) = forprime(p=5, nn, if(isprime(14*p+1), print1(p, ", "))); \\ Altug Alkan, Sep 18 2016

A227297 Suppose that (m, m+1) is a pair of consecutive powerful numbers as defined by A001694. This sequence gives the values of m for which neither m nor m+1 are perfect squares.

Original entry on oeis.org

12167, 5425069447, 11968683934831, 28821995554247, 48689748233307, 161461422688535037152, 3887785221910670811499
Offset: 1

Author

Ant King, Jul 07 2013

Keywords

Comments

a(1) to a(5) were found by Jaroslaw Wroblewski, who also proved that this sequence is infinite (see link to Problem 53 below). However, there are no more terms less than 500^6 = 1.5625*10^16.
A subsequence of A060355 and of A001694.

Examples

			12167 is a term because (12167, 12168) are a pair of consecutive powerful numbers, neither of which are perfect squares.
235224 is not a term because although (235224, 235225) are a pair of consecutive powerful numbers, the larger member of the pair is a square number (= 485^2).
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 2nd ed., New York, Springer-Verlag, (1994), pp. 70-74. (See Powerful numbers, section B16.)

Crossrefs

Extensions

a(6)-a(7) from the b-file at A060355 added by Amiram Eldar, Mar 22 2025

A222883 Decimal expansion of Sierpiński's third constant, K3 = lim_{n->oo} ((1/n) * (Sum_{i=1..n} (A004018(i))^2) - 4* log(n)).

Original entry on oeis.org

8, 0, 6, 6, 4, 8, 6, 1, 8, 2, 9, 3, 3, 6, 3, 2, 4, 6, 1, 0, 5, 1, 1, 8, 7, 4, 3, 8, 8, 6, 0, 4, 6, 1, 7, 0, 5, 8, 0, 0, 7, 3, 6, 7, 1, 0, 0, 9, 4, 5, 8, 9, 9, 2, 2, 4, 4, 3, 6, 7, 7, 1, 3, 3, 7, 9, 1, 2, 5, 7, 3, 6, 6, 4, 6, 4, 7, 3, 1, 1, 4, 9, 0, 2, 1, 6, 5, 4, 0, 5, 5, 9, 3, 2, 2, 4, 7, 2, 1, 6, 7, 8, 1, 5, 1
Offset: 1

Author

Ant King, Mar 11 2013

Keywords

Comments

Sierpiński introduced three constants in his 1908 doctoral thesis. The first, K, is very well known, bears his name and its decimal expansion is given in A062089. However, the second and third of these constants appear to have been largely forgotten. This sequence gives the decimal expansion of the third one, K3, and A222882 gives the decimal expansion of the second one, K2. The formula given below show that K3 is related to several other, naturally occurring constants including K and K2.

Examples

			K3 = 8.066486182933632461051187438860461705800736710094589922443677...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopaedia of Mathematics and its Applications, Cambridge University Press (2003), p.123. Corrigenda in the link below.

Programs

  • Mathematica
    Take[RealDigits[N[4/3 (24*Log[Gamma[3/4]] - 12*Log[Pi] + 72*Log[Glaisher] - 5*Log[2] + 6*EulerGamma - 3), 100]][[1]], 86]
  • PARI
    4*log(exp(5*Euler-1)/(2^(5/3)/agm(sqrt(2),1)^4))-48/Pi^2*zeta'(2) - 4*Euler \\ Charles R Greathouse IV, Dec 12 2013

Formula

K3 = 8*K / Pi - 48 / Pi^2 * zeta'(2) + 4 * log(2) / 3 - 4, where K is Sierpinski's first constant (A062089).
K3 = 4 / 3 * log(A^72 * e^(6 * eulergamma - 3)*( Gamma(3/4))^24 / (32 * pi^12)), where A is the Glaisher-Kinkelin constant (A074962) and eulergamma is the Euler-Mascheroni constant (A001620).
K3 = 4*log(exp(5*eulergamma - 1) / (2^(5 / 3) * G^4)) - 48 / Pi^2 * zeta'(2) - 4* eulergamma, where G is Gauss’ AGM constant (A014549).
K3 = 4*log(Pi^4 * e^(5*eulergamma - 1) / (2^(5 / 3) * L^4)) - 48 / Pi^2 * zeta'(2) - 4* eulergamma, where L is Gauss’ lemniscate constant (A062539).
K3 = 4*K / Pi + Pi * K2 - 4 * eulergamma, where K2 is Sierpiński's second constant (A222882).
1 / 4 * K3 - 1 / 4 * Pi * K2 - log(pi^2 / (2 * L^2)) = eulergamma.
1 / 4 * K3 - 1 / 4 * Pi * K2 + log(2 * G^2) = eulergamma.

Extensions

More terms from Robert G. Wilson v, Oct 19 2013

A222882 Decimal expansion of Sierpiński's second constant, K2 = lim_{n->oo} ((1/n) * (Sum_{i=1..n} A004018(i^2)) - 4/Pi * log(n)).

Original entry on oeis.org

2, 2, 5, 4, 9, 2, 2, 4, 6, 2, 8, 8, 8, 2, 6, 4, 7, 6, 6, 2, 6, 8, 1, 8, 4, 7, 5, 9, 5, 2, 8, 7, 2, 3, 5, 5, 7, 8, 7, 1, 6, 6, 1, 5, 9, 8, 6, 0, 5, 3, 5, 1, 8, 8, 9, 1, 3, 8, 3, 1, 1, 6, 1, 8, 8, 5, 9, 1, 7, 2, 9, 2, 8, 9, 5, 9, 7, 1, 3, 9, 3, 4, 1, 0, 5, 8
Offset: 1

Author

Ant King, Mar 11 2013

Keywords

Comments

Sierpiński introduced three constants in his 1908 doctoral thesis. The first, K, is very well known, bears his name and its decimal expansion is given in A062089. However, the second and third of these constants appear to have been largely forgotten. This sequence gives the decimal expansion of the second one, K2, and A222883 gives the decimal expansion of the third , K3. The formula given below show that K2 is related to several other, naturally occurring constants.

Examples

			K2 = 2.25492246288826476626818475952872355787166159860535188913831...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopaedia of Mathematics and its Applications, Cambridge University Press (2003), p.123. Corrigenda in the link below.

Programs

  • Mathematica
    Take[Flatten[RealDigits[N[4(12 Log[Gamma[3/4]]-9 Log[Pi]+72 Log[Glaisher]-5 Log[2]+3 EulerGamma-3)/(3 Pi),100]]],86]
  • PARI
    4/Pi*(log(exp(3*Euler-1)/(2^(2/3)/agm(sqrt(2),1)^2)) - 12/Pi^2*zeta'(2)) \\ Charles R Greathouse IV, Dec 12 2013

Formula

K2 = 4 / Pi * (eulergamma + K / Pi - 12 / Pi^2 * zeta'(2) + log(2) / 3 -1), where K is Sierpiński's first constant (A062089) and eulergamma is the Euler-Mascheroni constant (A001620).
K2 = 4 * (12 * log(Gamma(3/4)) - 9*log(Pi) + 72*log(A) - 5*log(2) + 3 * eulergamma - 3) / (3 * Pi), where A is the Glaisher-Kinkelin constant (A074962).
K2 = 4 * (12 * log(Gamma(3/4)) + log(A^72 * e^(3*eulergamma - 3) / (32 * Pi^9))) / (3 * Pi).
K2 = 4 / Pi * (log(e^(3*eulergamma - 1) / (2^(2/3) * G^2)) - 12 / Pi^2 * zeta'(2)), where G is Gauss’ AGM constant (A014549).
K2 = 4 / Pi * (log(Pi^2 * e^(3*eulergamma - 1) / (2^(2/3) * L^2)) - 12 / Pi^2 * zeta'(2)), where L is Gauss’ lemniscate constant (A062539).

Extensions

Minor edits by Vaclav Kotesovec, Nov 14 2014

A218331 Even, nonzero decagonal pyramidal numbers.

Original entry on oeis.org

38, 90, 476, 708, 1826, 2366, 4600, 5576, 9310, 10850, 16468, 18700, 26586, 29638, 40176, 44176, 57750, 62826, 79820, 86100, 106898, 114510, 139496, 148568, 178126, 188786, 223300, 235676, 275530, 289750, 335328, 351520, 403206, 421498, 479676, 500196
Offset: 1

Author

Ant King, Oct 29 2012

Keywords

Examples

			The sequence of nonzero decagonal pyramidal numbers begins 1, 11, 38, 90, 175, 301, 476, 708, 1005, 1375,... As the third even term is 476, then a(3) = 476.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{38,90,476,708,1826,2366,4600},36]

Formula

a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) + 512.
a(n) = (16*n-4*(-1)^n-1)*(4*n-(-1)^n+3)*(4*n-(-1)^n+1)/24.
G. f. 2*x*(19+26*x+136*x^2+38*x^3+37*x^4)/((1-x)^4*(1+x)^3).

A218330 Odd decagonal pyramidal numbers.

Original entry on oeis.org

1, 11, 175, 301, 1005, 1375, 3003, 3745, 6681, 7923, 12551, 14421, 21125, 23751, 32915, 36425, 48433, 52955, 68191, 73853, 92701, 99631, 122475, 130801, 158025, 167875, 199863, 211365, 248501, 261783, 304451, 319641, 368225, 385451, 440335, 459725, 521293
Offset: 1

Author

Ant King, Oct 29 2012

Keywords

Examples

			The sequence of decagonal pyramidal numbers A007585 begins 0, 1, 11, 38, 90, 175, 301, 476, 708, 1005, 1375,... As the third odd term is 175, then a(3) = 175.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1}, {1,11,175,301,1005,1375,3003}, 37]

Formula

a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) + 512.
a(n) = (16*n-4*(-1)^n-17)*(4*n-(-1)^n-3)*(4*n-(-1)^n-1)/24.
G. f. x*(1+10*x+161*x^2+96*x^3+215*x^4+22*x^5+7*x^6)/((1-x)^4*(1+x)^3).

A218329 Even 9-gonal (nonagonal) pyramidal numbers.

Original entry on oeis.org

10, 34, 80, 266, 420, 624, 1210, 1606, 2080, 3290, 4040, 4896, 6954, 8170, 9520, 12650, 14444, 16400, 20826, 23310, 25984, 31930, 35216, 38720, 46410, 50610, 55056, 64714, 69940, 75440, 87290, 93654, 100320, 114586, 122200, 130144, 147050, 156026, 165360
Offset: 1

Author

Ant King, Oct 28 2012

Keywords

Examples

			The sequence of 9-gonal (nonagonal) pyramidal numbers A007584 begins 1, 10, 34, 80, 155, 266, 420, 624, 885, 1210,.... As the third even term is 80, then a(3) = 80.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1},{10,34,80,266,420,624,1210,1606,2080,3290},39]

Formula

a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) - 3*a(n-6) + 3*a(n-7) + a(n-9) - a(n-10).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) + 448.
a(n) = phi(n)*(phi(n)+9)*(7*phi(n)-36)/4374, where phi(n) = 3 + 12*n - 3*cos(2*n*Pi/3) + sqrt(3)*sin(2*n*Pi/3).
G.f.: 2*x*(5+12*x+23*x^2+78*x^3+41*x^4+33*x^5+29*x^6+3*x^7)/((1-x)^4*(1+x+x^2)^3).

A218328 Odd 9-gonal (nonagonal) pyramidal numbers.

Original entry on oeis.org

1, 155, 885, 2639, 5865, 11011, 18525, 28855, 42449, 59755, 81221, 107295, 138425, 175059, 217645, 266631, 322465, 385595, 456469, 535535, 623241, 720035, 826365, 942679, 1069425, 1207051, 1356005, 1516735, 1689689, 1875315, 2074061, 2286375, 2512705, 2753499
Offset: 1

Author

Ant King, Oct 28 2012

Keywords

Examples

			The sequence of 9-gonal (nonagonal) pyramidal numbers A007584 begins 1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, .... As the third odd term is 885, then a(3) = 885.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,155,885,2639},33]
  • PARI
    a(n)=(2*n-1)*(4*n-3)*(28*n-25)/3 \\ Charles R Greathouse IV, Oct 18 2022

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 448.
a(n) = (2*n-1)*(4*n-3)*(28*n-25)/3.
G.f.: x*(1+151*x+271*x^2+25*x^3)/(1-x)^4.
E.g.f.: 25 + exp(x)*(224*x^3 + 192*x^2 + 78*x - 75)/3. - Elmo R. Oliveira, Aug 24 2025

A218327 Even octagonal pyramidal numbers (A002414).

Original entry on oeis.org

30, 70, 364, 540, 1386, 1794, 3480, 4216, 7030, 8190, 12420, 14100, 20034, 22330, 30256, 33264, 43470, 47286, 60060, 64780, 80410, 86130, 104904, 111720, 133926, 141934, 167860, 177156, 207090, 217770, 252000, 264160, 302974, 316710, 360396, 375804, 424650
Offset: 1

Author

Ant King, Oct 27 2012

Keywords

Examples

			The sequence of octagonal pyramidal numbers A002414 begins 1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, … As the third even term is 364, then a(3) = 364.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{30,70,364,540,1386,1794,3480},37]

Formula

a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7)
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) + 384
a(n) = (4*n-(-1)^n+1)*(4*n-(-1)^n+3)*(4*n-(-1)^n)/8
G. f. 2*x(15+20*x+102*x^2+28*x^3+27*x^4)/((1-x)^4*(1+x)^3)

A218326 Odd octagonal pyramidal numbers.

Original entry on oeis.org

1, 9, 135, 231, 765, 1045, 2275, 2835, 5049, 5985, 9471, 10879, 15925, 17901, 24795, 27435, 36465, 39865, 51319, 55575, 69741, 74949, 92115, 98371, 118825, 126225, 150255, 158895, 186789, 196765, 228811, 240219, 276705, 289641, 330855, 345415, 391645, 407925
Offset: 1

Author

Ant King, Oct 27 2012

Keywords

Examples

			The sequence of octagonal pyramidal numbers A002414 begins 1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, … As the third odd term is 135, then a(3) = 135.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,9,135,231,765,1045,2275},38]

Formula

a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) + 384.
a(n) = (4*n-(-1)^n-1)*(4*n-(-1)^n-3)*(4*n-(-1)^n-4)/8.
G. f. x(1+8*x+123*x^2+72*x^3+159*x^4+16*x^5+5*x^6)/((1-x)^4*(1+x)^3).