A218330 Odd decagonal pyramidal numbers.
1, 11, 175, 301, 1005, 1375, 3003, 3745, 6681, 7923, 12551, 14421, 21125, 23751, 32915, 36425, 48433, 52955, 68191, 73853, 92701, 99631, 122475, 130801, 158025, 167875, 199863, 211365, 248501, 261783, 304451, 319641, 368225, 385451, 440335, 459725, 521293
Offset: 1
Keywords
Examples
The sequence of decagonal pyramidal numbers A007585 begins 0, 1, 11, 38, 90, 175, 301, 476, 708, 1005, 1375,... As the third odd term is 175, then a(3) = 175.
Links
- Index entries for linear recurrences with constant coefficients, signature (1, 3, -3, -3, 3, 1, -1).
Programs
-
Mathematica
LinearRecurrence[{1,3,-3,-3,3,1,-1}, {1,11,175,301,1005,1375,3003}, 37]
Formula
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) + 512.
a(n) = (16*n-4*(-1)^n-17)*(4*n-(-1)^n-3)*(4*n-(-1)^n-1)/24.
G. f. x*(1+10*x+161*x^2+96*x^3+215*x^4+22*x^5+7*x^6)/((1-x)^4*(1+x)^3).