cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A062089 Decimal expansion of Sierpiński's constant.

Original entry on oeis.org

2, 5, 8, 4, 9, 8, 1, 7, 5, 9, 5, 7, 9, 2, 5, 3, 2, 1, 7, 0, 6, 5, 8, 9, 3, 5, 8, 7, 3, 8, 3, 1, 7, 1, 1, 6, 0, 0, 8, 8, 0, 5, 1, 6, 5, 1, 8, 5, 2, 6, 3, 0, 9, 1, 7, 3, 2, 1, 5, 4, 4, 9, 8, 7, 9, 7, 1, 9, 3, 2, 0, 4, 4, 0, 0, 1, 1, 5, 7, 1, 2, 0, 2, 1, 1, 1, 1, 7, 7, 2, 4, 5, 2, 7, 0, 6, 4, 2, 8, 3, 0, 3, 1, 3, 4
Offset: 1

Views

Author

Jason Earls, Jun 27 2001

Keywords

Examples

			2.5849817595792532170658935873831711600880516518526309173215...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 122-126.

Crossrefs

Programs

  • Mathematica
    K=-Pi Log[Pi]+2 Pi EulerGamma+4 Pi Log[Gamma[3/4]];First@RealDigits[N[K,105]](* Ant King, Mar 02 2013 *)
  • PARI
    -Pi*log(Pi)+2*Pi*Euler+4*Pi*log(gamma(3/4))
    
  • PARI
    { default(realprecision, 5080); x=-Pi*log(Pi)+2*Pi*Euler+4*Pi*log(gamma(3/4)); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062089.txt", n, " ", d)) } \\ Harry J. Smith, Aug 01 2009

Formula

Equals -Pi*log(Pi)+2*Pi*gamma+4*Pi*log(GAMMA(3/4)).
Equals Pi*A241017. - Eric W. Weisstein, Dec 10 2014
Equals Pi*(A086058-1). - Eric W. Weisstein, Dec 10 2014
Equals lim_{n->oo} (A004018(n)/n - Pi*log(n)). - Amiram Eldar, Apr 15 2021

A222883 Decimal expansion of Sierpiński's third constant, K3 = lim_{n->oo} ((1/n) * (Sum_{i=1..n} (A004018(i))^2) - 4* log(n)).

Original entry on oeis.org

8, 0, 6, 6, 4, 8, 6, 1, 8, 2, 9, 3, 3, 6, 3, 2, 4, 6, 1, 0, 5, 1, 1, 8, 7, 4, 3, 8, 8, 6, 0, 4, 6, 1, 7, 0, 5, 8, 0, 0, 7, 3, 6, 7, 1, 0, 0, 9, 4, 5, 8, 9, 9, 2, 2, 4, 4, 3, 6, 7, 7, 1, 3, 3, 7, 9, 1, 2, 5, 7, 3, 6, 6, 4, 6, 4, 7, 3, 1, 1, 4, 9, 0, 2, 1, 6, 5, 4, 0, 5, 5, 9, 3, 2, 2, 4, 7, 2, 1, 6, 7, 8, 1, 5, 1
Offset: 1

Views

Author

Ant King, Mar 11 2013

Keywords

Comments

Sierpiński introduced three constants in his 1908 doctoral thesis. The first, K, is very well known, bears his name and its decimal expansion is given in A062089. However, the second and third of these constants appear to have been largely forgotten. This sequence gives the decimal expansion of the third one, K3, and A222882 gives the decimal expansion of the second one, K2. The formula given below show that K3 is related to several other, naturally occurring constants including K and K2.

Examples

			K3 = 8.066486182933632461051187438860461705800736710094589922443677...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopaedia of Mathematics and its Applications, Cambridge University Press (2003), p.123. Corrigenda in the link below.

Crossrefs

Programs

  • Mathematica
    Take[RealDigits[N[4/3 (24*Log[Gamma[3/4]] - 12*Log[Pi] + 72*Log[Glaisher] - 5*Log[2] + 6*EulerGamma - 3), 100]][[1]], 86]
  • PARI
    4*log(exp(5*Euler-1)/(2^(5/3)/agm(sqrt(2),1)^4))-48/Pi^2*zeta'(2) - 4*Euler \\ Charles R Greathouse IV, Dec 12 2013

Formula

K3 = 8*K / Pi - 48 / Pi^2 * zeta'(2) + 4 * log(2) / 3 - 4, where K is Sierpinski's first constant (A062089).
K3 = 4 / 3 * log(A^72 * e^(6 * eulergamma - 3)*( Gamma(3/4))^24 / (32 * pi^12)), where A is the Glaisher-Kinkelin constant (A074962) and eulergamma is the Euler-Mascheroni constant (A001620).
K3 = 4*log(exp(5*eulergamma - 1) / (2^(5 / 3) * G^4)) - 48 / Pi^2 * zeta'(2) - 4* eulergamma, where G is Gauss’ AGM constant (A014549).
K3 = 4*log(Pi^4 * e^(5*eulergamma - 1) / (2^(5 / 3) * L^4)) - 48 / Pi^2 * zeta'(2) - 4* eulergamma, where L is Gauss’ lemniscate constant (A062539).
K3 = 4*K / Pi + Pi * K2 - 4 * eulergamma, where K2 is Sierpiński's second constant (A222882).
1 / 4 * K3 - 1 / 4 * Pi * K2 - log(pi^2 / (2 * L^2)) = eulergamma.
1 / 4 * K3 - 1 / 4 * Pi * K2 + log(2 * G^2) = eulergamma.

Extensions

More terms from Robert G. Wilson v, Oct 19 2013
Showing 1-2 of 2 results.