cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A004018 Theta series of square lattice (or number of ways of writing n as a sum of 2 squares). Often denoted by r(n) or r_2(n).

Original entry on oeis.org

1, 4, 4, 0, 4, 8, 0, 0, 4, 4, 8, 0, 0, 8, 0, 0, 4, 8, 4, 0, 8, 0, 0, 0, 0, 12, 8, 0, 0, 8, 0, 0, 4, 0, 8, 0, 4, 8, 0, 0, 8, 8, 0, 0, 0, 8, 0, 0, 0, 4, 12, 0, 8, 8, 0, 0, 0, 0, 8, 0, 0, 8, 0, 0, 4, 16, 0, 0, 8, 0, 0, 0, 4, 8, 8, 0, 0, 0, 0, 0, 8, 4, 8, 0, 0, 16, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 8, 4, 0, 12, 8
Offset: 0

Views

Author

Keywords

Comments

Number of points in square lattice on the circle of radius sqrt(n). Equivalently, number of Gaussian integers of norm n (cf. Conway-Sloane, p. 106).
Let b(n)=A004403(n), then Sum_{k=1..n} a(k)*b(n-k) = 1. - John W. Layman
Theta series of D_2 lattice.
Number 6 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The zeros in this sequence correspond to those integers with an equal number of 4k+1 and 4k+3 divisors, or equivalently to those that have at least one 4k+3 prime factor with an odd exponent (A022544). - Ant King, Mar 12 2013
If A(q) = 1 + 4*q + 4*q^2 + 4*q^4 + 8*q^5 + ... denotes the o.g.f. of this sequence then the function F(q) := 1/4*(A(q^2) - A(q^4)) = ( Sum_{n >= 0} q^(2*n+1)^2 )^2 is the o.g.f. for counting the ways a positive integer n can be written as the sum of two positive odd squares. - Peter Bala, Dec 13 2013
Expansion coefficients of (2/Pi)*K, with the real quarter period K of elliptic functions, as series of the Jacobi nome q, due to (2/Pi)*K = theta_3(0,q)^2. See, e.g., Whittaker-Watson, p. 486. - Wolfdieter Lang, Jul 15 2016
Sum_{k=0..n} a(n) = A057655(n). Robert G. Wilson v, Dec 22 2016
Limit_{n->oo} (a(n)/n - Pi*log(n)) = A062089: Sierpinski's constant. - Robert G. Wilson v, Dec 22 2016
The mean value of a(n) is Pi, see A057655 for more details. - M. F. Hasler, Mar 20 2017

Examples

			G.f. = 1 + 4*q + 4*q^2 + 4*q^4 + 8*q^5 + 4*q^8 + 4*q^9 + 8*q^10 + 8*q^13 + 4*q^16 + 8*q^17 + 4*q^18 + 8*q^20 + 12*q^25 + 8*q^26 + ... . - _John Cannon_, Dec 30 2006
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16 (7), r(n).
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.23).
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 15, p. 32, Lemma 2 (with the proof), p. 116, (9.10) first formula.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 133.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 240, r(n).
  • W. König and J. Sprekels, Karl Weierstraß (1815-1897), Springer Spektrum, Wiesbaden, 2016, p. 186-187 and p. 280-281.
  • C. D. Olds, A. Lax and G. P. Davidoff, The Geometry of Numbers, Math. Assoc. Amer., 2000, p. 51.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 244-245.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth edition, reprinted, 1958, Cambridge at the University Press.

Crossrefs

Row d=2 of A122141 and of A319574, 2nd column of A286815.
Partial sums - 1 give A014198.
A071385 gives records; A071383 gives where records occur.

Programs

  • Julia
    # JacobiTheta3 is defined in A000122.
    A004018List(len) = JacobiTheta3(len, 2)
    A004018List(102) |> println # Peter Luschny, Mar 12 2018
    
  • Magma
    Basis( ModularForms( Gamma1(4), 1), 100) [1]; /* Michael Somos, Jun 10 2014 */
    
  • Maple
    (sum(x^(m^2),m=-10..10))^2;
    # Alternative:
    A004018list := proc(len) series(JacobiTheta3(0, x)^2, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end:
    t1 := A004018list(102);
    r2 := n -> t1[n+1]; # Peter Luschny, Oct 02 2018
  • Mathematica
    SquaresR[2,Range[0,110]] (* Harvey P. Dale, Oct 10 2011 *)
    a[ n_] := SquaresR[ 2, n]; (* Michael Somos, Nov 15 2011 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^2, {q, 0, n}]; (* Michael Somos, Nov 15 2011 *)
    a[ n_] := With[{m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ EllipticK[ m] / (Pi/2), {q, 0, n}]]; (* Michael Somos, Jun 10 2014 *)
    a[ n_] := If[ n < 1, Boole[n == 0], 4 Sum[ KroneckerSymbol[-4, d], {d, Divisors@n}]]; (* or *) a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^10/(QPochhammer[ q] QPochhammer[ q^4])^4, {q, 0, n}]; (* Michael Somos, May 17 2015 *)
  • PARI
    {a(n) = polcoeff( 1 + 4 * sum( k=1, n, x^k / (1 + x^(2*k)), x * O(x^n)), n)}; /* Michael Somos, Mar 14 2003 */
    
  • PARI
    {a(n) = if( n<1, n==0, 4 * sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Jul 19 2004 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 1], n)[n])}; /* Michael Somos, May 13 2005 */
    
  • PARI
    a(n)=if(n==0,return(1)); my(f=factor(n)); 4*prod(i=1,#f~, if(f[i,1]%4==1, f[i,2]+1, if(f[i,2]%2 && f[i,1]>2, 0, 1))) \\ Charles R Greathouse IV, Sep 02 2015
    
  • Python
    from sympy import factorint
    def a(n):
        if n == 0: return 1
        an = 4
        for pi, ei in factorint(n).items():
           if pi%4 == 1: an *= ei+1
           elif pi%4 == 3 and ei%2: return 0
        return an
    print([a(n) for n in range(102)]) # Michael S. Branicky, Sep 24 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A004018(n): return prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in factorint(n).items())<<2 if n else 1 # Chai Wah Wu, Jul 07 2022, corrected Jun 21 2024.
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*2)
    Q.representation_number_list(102) # Peter Luschny, Jun 20 2014
    

Formula

Expansion of theta_3(q)^2 = (Sum_{n=-oo..+oo} q^(n^2))^2 = Product_{m>=1} (1-q^(2*m))^2 * (1+q^(2*m-1))^4; convolution square of A000122.
Factor n as n = p1^a1 * p2^a2 * ... * q1^b1 * q2^b2 * ... * 2^c, where the p's are primes == 1 (mod 4) and the q's are primes == 3 (mod 4). Then a(n) = 0 if any b is odd, otherwise a(n) = 4*(1 + a1)*(1 + a2)*...
G.f. = s(2)^10/(s(1)^4*s(4)^4), where s(k) := subs(q=q^k, eta(q)) and eta(q) is Dedekind's function, cf. A010815. [Fine]
a(n) = 4*A002654(n), n > 0.
Expansion of eta(q^2)^10 / (eta(q) * eta(q^4))^4 in powers of q. - Michael Somos, Jul 19 2004
Expansion of ( phi(q)^2 + phi(-q)^2 ) / 2 in powers of q^2 where phi() is a Ramanujan theta function.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u - v)^2 - (v - w) * 4 * w. - Michael Somos, Jul 19 2004
Euler transform of period 4 sequence [4, -6, 4, -2, ...]. - Michael Somos, Jul 19 2004
Moebius transform is period 4 sequence [4, 0, -4, 0, ...]. - Michael Somos, Sep 17 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2 (t/i) f(t) where q = exp(2 Pi i t).
The constant sqrt(Pi)/Gamma(3/4)^2 produces the first 324 terms of the sequence when expanded in base exp(Pi), 450 digits of the constant are necessary. - Simon Plouffe, Mar 03 2011
a(n) = A004531(4*n). a(n) = 2*A105673(n), if n>0.
Let s = 16*q*(E1*E4^2/E2^3)^8 where Ek = Product_{n>=1} (1-q^(k*n)) (s=k^2 where k is elliptic k), then the g.f. is hypergeom([+1/2, +1/2], [+1], s) (expansion of 2/Pi*ellipticK(k) in powers of q). - Joerg Arndt, Aug 15 2011
Dirichlet g.f. Sum_{n>=1} a(n)/n^s = 4*zeta(s)*L_(-4)(s), where L is the D.g.f. of the (shifted) A056594. [Raman. J. 7 (2003) 95-127]. - R. J. Mathar, Jul 02 2012
a(n) = floor(1/(n+1)) + 4*floor(cos(Pi*sqrt(n))^2) - 4*floor(cos(Pi*sqrt(n/2))^2) + 8*Sum_{i=1..floor(n/2)} floor(cos(Pi*sqrt(i))^2)*floor(cos(Pi*sqrt(n-i))^2). - Wesley Ivan Hurt, Jan 09 2013
From Wolfdieter Lang, Aug 01 2016: (Start)
A Jacobi identity: theta_3(0, q)^2 = 1 + 4*Sum_{r>=0} (-1)^r*q^(2*r+1)/(1 - q^(2*r+1)). See, e.g., the Grosswald reference (p. 15, p. 116, but p. 32, Lemma 2 with the proof, has the typo r >= 1 instead of r >= 0 in the sum, also in the proof). See the link with the Jacobi-Legendre letter.
Identity used by Weierstraß (see the König-Sprekels book, p. 187, eq. (5.12) and p. 281, with references, but there F(x) from (5.11) on p. 186 should start with nu =1 not 0): theta_3(0, q)^2 = 1 + 4*Sum_{n>=1} q^n/(1 + q^(2*n)). Proof: similar to the one of the preceding Jacobi identity. (End)
a(n) = (4/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017
G.f.: Theta_3(q)^2 = hypergeometric([1/2, 1/2],[1],lambda(q)), with lambda(q) = Sum_{j>=1} A115977(j)*q^j. See the Kontsevich and Zagier link, with Theta -> Theta_3, z -> 2*z and q -> q^2. - Wolfdieter Lang, May 27 2018

A086058 Decimal expansion of conjectured value of delta related to the Masser-Gramain constant.

Original entry on oeis.org

1, 8, 2, 2, 8, 2, 5, 2, 4, 9, 6, 7, 8, 8, 4, 7, 0, 3, 2, 9, 9, 5, 3, 2, 8, 7, 1, 6, 2, 6, 1, 4, 6, 4, 9, 4, 9, 4, 7, 5, 6, 9, 3, 1, 1, 8, 8, 9, 4, 8, 5, 0, 2, 1, 8, 3, 9, 3, 8, 1, 5, 6, 1, 3, 0, 3, 7, 0, 9, 0, 9, 5, 6, 4, 4, 6, 4, 0, 1, 6, 6, 7, 5, 7, 2, 1, 9, 5, 3, 2, 5, 7, 3, 2, 3, 4, 4, 5, 3, 2, 4, 7
Offset: 1

Views

Author

Eric W. Weisstein, Jul 07 2003

Keywords

Comments

Numerical work by Melquiond et al. (see reference) disproves Gramain's conjecture, correct bounds for the Masser-Gramain constant delta are: 1.819776 < delta < 1.819833. - Vaclav Kotesovec, Apr 27 2015

Examples

			1.82282524967884703299532871626146494947569311889485021839381561303709...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 7.2, p. 460.

Crossrefs

Programs

Formula

Equals 1 + A241017.
Equals 1 + A062089/Pi.

A222882 Decimal expansion of Sierpiński's second constant, K2 = lim_{n->oo} ((1/n) * (Sum_{i=1..n} A004018(i^2)) - 4/Pi * log(n)).

Original entry on oeis.org

2, 2, 5, 4, 9, 2, 2, 4, 6, 2, 8, 8, 8, 2, 6, 4, 7, 6, 6, 2, 6, 8, 1, 8, 4, 7, 5, 9, 5, 2, 8, 7, 2, 3, 5, 5, 7, 8, 7, 1, 6, 6, 1, 5, 9, 8, 6, 0, 5, 3, 5, 1, 8, 8, 9, 1, 3, 8, 3, 1, 1, 6, 1, 8, 8, 5, 9, 1, 7, 2, 9, 2, 8, 9, 5, 9, 7, 1, 3, 9, 3, 4, 1, 0, 5, 8
Offset: 1

Views

Author

Ant King, Mar 11 2013

Keywords

Comments

Sierpiński introduced three constants in his 1908 doctoral thesis. The first, K, is very well known, bears his name and its decimal expansion is given in A062089. However, the second and third of these constants appear to have been largely forgotten. This sequence gives the decimal expansion of the second one, K2, and A222883 gives the decimal expansion of the third , K3. The formula given below show that K2 is related to several other, naturally occurring constants.

Examples

			K2 = 2.25492246288826476626818475952872355787166159860535188913831...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopaedia of Mathematics and its Applications, Cambridge University Press (2003), p.123. Corrigenda in the link below.

Crossrefs

Programs

  • Mathematica
    Take[Flatten[RealDigits[N[4(12 Log[Gamma[3/4]]-9 Log[Pi]+72 Log[Glaisher]-5 Log[2]+3 EulerGamma-3)/(3 Pi),100]]],86]
  • PARI
    4/Pi*(log(exp(3*Euler-1)/(2^(2/3)/agm(sqrt(2),1)^2)) - 12/Pi^2*zeta'(2)) \\ Charles R Greathouse IV, Dec 12 2013

Formula

K2 = 4 / Pi * (eulergamma + K / Pi - 12 / Pi^2 * zeta'(2) + log(2) / 3 -1), where K is Sierpiński's first constant (A062089) and eulergamma is the Euler-Mascheroni constant (A001620).
K2 = 4 * (12 * log(Gamma(3/4)) - 9*log(Pi) + 72*log(A) - 5*log(2) + 3 * eulergamma - 3) / (3 * Pi), where A is the Glaisher-Kinkelin constant (A074962).
K2 = 4 * (12 * log(Gamma(3/4)) + log(A^72 * e^(3*eulergamma - 3) / (32 * Pi^9))) / (3 * Pi).
K2 = 4 / Pi * (log(e^(3*eulergamma - 1) / (2^(2/3) * G^2)) - 12 / Pi^2 * zeta'(2)), where G is Gauss’ AGM constant (A014549).
K2 = 4 / Pi * (log(Pi^2 * e^(3*eulergamma - 1) / (2^(2/3) * L^2)) - 12 / Pi^2 * zeta'(2)), where L is Gauss’ lemniscate constant (A062539).

Extensions

Minor edits by Vaclav Kotesovec, Nov 14 2014

A222883 Decimal expansion of Sierpiński's third constant, K3 = lim_{n->oo} ((1/n) * (Sum_{i=1..n} (A004018(i))^2) - 4* log(n)).

Original entry on oeis.org

8, 0, 6, 6, 4, 8, 6, 1, 8, 2, 9, 3, 3, 6, 3, 2, 4, 6, 1, 0, 5, 1, 1, 8, 7, 4, 3, 8, 8, 6, 0, 4, 6, 1, 7, 0, 5, 8, 0, 0, 7, 3, 6, 7, 1, 0, 0, 9, 4, 5, 8, 9, 9, 2, 2, 4, 4, 3, 6, 7, 7, 1, 3, 3, 7, 9, 1, 2, 5, 7, 3, 6, 6, 4, 6, 4, 7, 3, 1, 1, 4, 9, 0, 2, 1, 6, 5, 4, 0, 5, 5, 9, 3, 2, 2, 4, 7, 2, 1, 6, 7, 8, 1, 5, 1
Offset: 1

Views

Author

Ant King, Mar 11 2013

Keywords

Comments

Sierpiński introduced three constants in his 1908 doctoral thesis. The first, K, is very well known, bears his name and its decimal expansion is given in A062089. However, the second and third of these constants appear to have been largely forgotten. This sequence gives the decimal expansion of the third one, K3, and A222882 gives the decimal expansion of the second one, K2. The formula given below show that K3 is related to several other, naturally occurring constants including K and K2.

Examples

			K3 = 8.066486182933632461051187438860461705800736710094589922443677...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopaedia of Mathematics and its Applications, Cambridge University Press (2003), p.123. Corrigenda in the link below.

Crossrefs

Programs

  • Mathematica
    Take[RealDigits[N[4/3 (24*Log[Gamma[3/4]] - 12*Log[Pi] + 72*Log[Glaisher] - 5*Log[2] + 6*EulerGamma - 3), 100]][[1]], 86]
  • PARI
    4*log(exp(5*Euler-1)/(2^(5/3)/agm(sqrt(2),1)^4))-48/Pi^2*zeta'(2) - 4*Euler \\ Charles R Greathouse IV, Dec 12 2013

Formula

K3 = 8*K / Pi - 48 / Pi^2 * zeta'(2) + 4 * log(2) / 3 - 4, where K is Sierpinski's first constant (A062089).
K3 = 4 / 3 * log(A^72 * e^(6 * eulergamma - 3)*( Gamma(3/4))^24 / (32 * pi^12)), where A is the Glaisher-Kinkelin constant (A074962) and eulergamma is the Euler-Mascheroni constant (A001620).
K3 = 4*log(exp(5*eulergamma - 1) / (2^(5 / 3) * G^4)) - 48 / Pi^2 * zeta'(2) - 4* eulergamma, where G is Gauss’ AGM constant (A014549).
K3 = 4*log(Pi^4 * e^(5*eulergamma - 1) / (2^(5 / 3) * L^4)) - 48 / Pi^2 * zeta'(2) - 4* eulergamma, where L is Gauss’ lemniscate constant (A062539).
K3 = 4*K / Pi + Pi * K2 - 4 * eulergamma, where K2 is Sierpiński's second constant (A222882).
1 / 4 * K3 - 1 / 4 * Pi * K2 - log(pi^2 / (2 * L^2)) = eulergamma.
1 / 4 * K3 - 1 / 4 * Pi * K2 + log(2 * G^2) = eulergamma.

Extensions

More terms from Robert G. Wilson v, Oct 19 2013

A062083 Continued fraction expansion of Sierpiński's Constant.

Original entry on oeis.org

2, 1, 1, 2, 2, 3, 1, 3, 1, 9, 2, 8, 4, 1, 13, 3, 1, 15, 18, 1, 3, 1, 4, 5, 1, 70, 1, 1, 2, 1, 1, 1, 1, 1, 5, 2, 1, 9, 11, 1, 7, 1, 1, 1, 1, 2, 1, 1, 5, 1, 5, 5, 1, 6, 5, 7, 16, 3, 4, 3, 5, 4, 8, 1, 7, 1, 3, 1, 8, 1, 1, 6, 30, 1, 4, 5, 39, 9, 1, 1, 2, 1, 1, 2, 4, 9, 12, 1, 2, 3, 2, 1, 9, 3, 1, 2, 1, 2, 141
Offset: 0

Views

Author

Jason Earls, Jun 27 2001

Keywords

Examples

			2.5849817595792532170658935873831711600880516518526309173215...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 122-126.

Crossrefs

Cf. A062089 (decimal expansion).

Programs

  • PARI
    contfrac(-Pi*log(Pi)+2*Pi*Euler+4*Pi*log(gamma(3/4)))
    
  • PARI
    { allocatemem(932245000); default(realprecision, 5500); x=contfrac(-Pi*log(Pi)+2*Pi*Euler+4*Pi*log(gamma(3/4))); for (n=1, 5000, write("b062083.txt", n-1, " ", x[n])) } \\ Harry J. Smith, Aug 01 2009

Extensions

Offset changed by Andrew Howroyd, Aug 04 2024

A241011 Decimal expansion of Sierpiński's S~ (S "tilde" as named by S. Finch), a constant appearing in the asymptotics of the number of representations of a positive integer as a sum of two squares.

Original entry on oeis.org

2, 0, 1, 6, 6, 2, 1, 5, 4, 5, 7, 3, 3, 4, 0, 8, 1, 1, 5, 2, 6, 2, 7, 9, 6, 8, 5, 9, 7, 1, 5, 1, 1, 5, 4, 2, 6, 4, 5, 0, 1, 8, 4, 1, 7, 7, 5, 2, 3, 6, 4, 7, 4, 8, 0, 6, 1, 0, 9, 1, 9, 2, 8, 3, 4, 4, 7, 8, 1, 4, 3, 4, 1, 6, 1, 6, 1, 8, 2, 7, 8, 7, 2, 5, 5, 4, 1, 3, 5, 1, 3, 9, 8, 3, 0, 6, 1, 8, 0, 4
Offset: 1

Views

Author

Jean-François Alcover, Aug 07 2014

Keywords

Comments

From Vaclav Kotesovec, Mar 10 2023: (Start)
Sum_{k=1..n} A002654(k)^2 ~ n * (log(n) + C) / 4, where C = A241011 =
4*gamma - 1 + log(2)/3 - 2*log(Pi) + 8*log(Gamma(3/4)) - 12*Zeta'(2)/Pi^2 = 2.01662154573340811526279685971511542645018417752364748061...
The constant C, published by Ramanujan (1916, formula (22)), 4*gamma - 1 + log(2)/3 - log(Pi) + 4*log(Gamma(3/4)) - 12*Zeta'(2)/Pi^2 = 2.3482276258576268... is wrong! (End)

Examples

			2.01662154573340811526279685971511542645018417752364748061...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.10 Sierpinski's constant, p. 122.

Crossrefs

Programs

  • Mathematica
    S = 2*EulerGamma + 2*Log[2] + 3*Log[Pi] - 4* Log[Gamma[1/4]]; (* S~ *) St = 2*S - 12/Pi^2*Zeta'[2] + Log[2]/3 - 1; RealDigits[St, 10, 100] // First

Formula

S_tilde = 2*S - 12/Pi^2*zeta'(2) + log(2)/3 - 1, where S = A086058 - 1 = A062089 / Pi.

A241017 Decimal expansion of Sierpiński's S constant, which appears in a series involving the function r(n), defined as the number of representations of the positive integer n as a sum of two squares. This S constant is the usual Sierpiński K constant divided by Pi.

Original entry on oeis.org

8, 2, 2, 8, 2, 5, 2, 4, 9, 6, 7, 8, 8, 4, 7, 0, 3, 2, 9, 9, 5, 3, 2, 8, 7, 1, 6, 2, 6, 1, 4, 6, 4, 9, 4, 9, 4, 7, 5, 6, 9, 3, 1, 1, 8, 8, 9, 4, 8, 5, 0, 2, 1, 8, 3, 9, 3, 8, 1, 5, 6, 1, 3, 0, 3, 7, 0, 9, 0, 9, 5, 6, 4, 4, 6, 4, 0, 1, 6, 6, 7, 5, 7, 2, 1, 9, 5, 3, 2, 5, 7, 3, 2, 3, 4, 4, 5, 3, 2, 4, 7, 2, 1, 4
Offset: 0

Views

Author

Jean-François Alcover, Aug 08 2014

Keywords

Examples

			0.822825249678847032995328716261464949475693118894850218393815613...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.10 Sierpinski's Constant, p. 123.

Crossrefs

Programs

  • Mathematica
    S = Log[4*Pi^3*Exp[2*EulerGamma]/Gamma[1/4]^4]; RealDigits[S, 10, 104] // First
  • PARI
    log(agm(sqrt(2), 1)^2/2) + 2*Euler \\ Charles R Greathouse IV, Nov 26 2024

Formula

S = gamma + beta'(1) / beta(1), where beta is Dirichlet's beta function.
S = log(Pi^2*exp(2*gamma) / (2*L^2)), where L is Gauss' lemniscate constant.
S = log(4*Pi^3*exp(2*gamma) / Gamma(1/4)^4), where gamma is Euler's constant and Gamma is Euler's Gamma function.
S = A062089 / Pi, where A062089 is Sierpiński's K constant.
S = A086058 - 1, where A086058 is the conjectured (but erroneous!) value of Masser-Gramain 'delta' constant. [updated by Vaclav Kotesovec, Apr 27 2015]
S = 2*gamma + (4/Pi)*integral_{x>0} exp(-x)*log(x)/(1-exp(-2*x)) dx.
Sum_{k=1..n} r(k)/k = Pi*(log(n) + S) + O(n^(-1/2)).
Equals 2*A001620 - A088538*A115252 [Coffey]. - R. J. Mathar, Jan 15 2021

A241009 Decimal expansion of Sierpiński's S^ (Ŝ or "S hat" as named by S. Finch), a constant appearing in the asymptotics of the number of representations of a positive integer as a sum of two squares.

Original entry on oeis.org

1, 7, 7, 1, 0, 1, 1, 9, 6, 0, 9, 5, 6, 0, 9, 3, 9, 4, 2, 8, 7, 3, 9, 8, 0, 2, 3, 3, 5, 3, 6, 0, 5, 2, 9, 0, 8, 0, 1, 6, 6, 5, 0, 3, 9, 4, 5, 6, 8, 7, 2, 0, 8, 6, 1, 0, 2, 2, 8, 7, 0, 9, 0, 5, 2, 9, 5, 5, 9, 1, 1, 1, 1, 9, 4, 7, 4, 4, 5, 7, 9, 0, 6, 2, 0, 1, 6, 5, 2, 5, 1, 5, 4, 2, 4, 6, 4, 0, 2, 1, 2
Offset: 1

Views

Author

Jean-François Alcover, Aug 07 2014

Keywords

Examples

			1.7710119609560939428739802335360529080166503945687208610228709...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.10 Sierpinski's constant, p. 122.

Crossrefs

Programs

  • Mathematica
    S = 2* EulerGamma + 2*Log[2 ] + 3*Log[Pi] - 4* Log[Gamma[1/4]]; (* S^ *) Sh = EulerGamma + S - 12/Pi^2 Zeta'[2] + Log[2]/3 - 1; RealDigits[Sh, 10, 101] // First
  • PARI
    3*Euler + 3*log(Pi) - 4*lngamma(1/4) - 12*zeta'(2)/Pi^2 + 7*log(2)/3 - 1 \\ Charles R Greathouse IV, Aug 08 2014

Formula

S_hat = gamma + S - 12/Pi^2*zeta'(2) + log(2)/3 - 1, where S = A086058 - 1 = A062089 / Pi.

A101419 Decimal expansion of d - log(d-e) where d is Feigenbaum's bifurcation velocity constant (A006890, delta constant) and e is Euler's constant.

Original entry on oeis.org

4, 0, 0, 0, 9, 0, 0, 6, 6, 5, 3, 5, 2, 9, 9, 1, 0, 0, 4, 8, 0, 9, 6, 2, 6, 0, 2, 4, 2, 2, 0, 2, 4, 9, 5, 7, 7, 5, 9, 5, 3, 0, 3, 2, 2, 0, 8, 2, 7, 9, 0, 8, 8, 0, 0, 9, 4, 0, 5, 3, 9, 9, 7, 6, 8, 9, 4, 8, 6, 9, 2, 0, 5, 9, 3, 9, 7, 2, 4, 6, 9, 6, 2, 5, 4, 7, 7, 8, 9, 6, 4, 0, 4, 4, 3, 9, 7, 0, 3, 0, 8, 0, 7, 7, 5
Offset: 1

Views

Author

Gerald McGarvey, Jan 16 2005

Keywords

Comments

From Plouffe's Inverter: log(s)^2 * a^2 * sin(1)^1 = 4.000900694855076... where s is Sierpinski's constant (A062089) and a is Feigenbaum's reduction parameter (A006891, alpha constant). 20 + Pi - exp(Pi) = .00090002081...

Examples

			4.00090066535299100480962602422024957759530322082790880094053997689...
		

Crossrefs

A108905 Engel series expansion for Sierpinski's constant.

Original entry on oeis.org

1, 1, 2, 6, 51, 114, 136, 149, 1388, 3654, 3961, 41614, 2975365, 4120126, 5760908, 11210809, 21235067, 43239302, 156258546, 230627452, 595763433, 4709180601, 148918280487, 841708059551, 2895551449652, 5660433533409, 6575950336213
Offset: 0

Views

Author

Hauke Worpel (hw1(AT)email.com), Jul 17 2005

Keywords

Crossrefs

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[ Array[ 1 &, Floor[ A]], First @ Transpose @ NestList[{Ceiling[ 1/Expand[ #[[1]] #[[2]] -1]], Expand[ #[[1]] #[[2]] -1]} &, {Ceiling[ 1/(A - Floor[A]) ], A - Floor[A]}, n - 1]]; EngelExp[ N[ Pi(-Log[Pi] + 2EulerGamma + 4LogGamma[3/4]), 2^8], 25] (* Robert G. Wilson v *)

Extensions

a(11) - a(26) from Robert G. Wilson v, Jul 21 2005
Showing 1-10 of 10 results.