cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 124 results. Next

A125853 Squared radii of circles centered at a grid point in a square lattice hitting exactly 4 points. Indices k such that A004018(k)=4.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 49, 64, 72, 81, 98, 121, 128, 144, 162, 196, 242, 256, 288, 324, 361, 392, 441, 484, 512, 529, 576, 648, 722, 729, 784, 882, 961, 968, 1024, 1058, 1089, 1152, 1296, 1444, 1458, 1568, 1764, 1849, 1922, 1936, 2048, 2116, 2178, 2209
Offset: 1

Views

Author

Hugo Pfoertner, Jan 07 2007

Keywords

Comments

From Jean-Christophe Hervé, Nov 17 2013: (Start)
Squares or double of squares that are not sum of two distinct nonzero squares.
Numbers without prime factor of form 4*k+1 and without prime factor of form 4*k+3 to an odd multiplicity.
The sequence is closed under multiplication. Primitive elements are 1, 2 and square of primes of form 4*k+3, that is union of {1, 2} and A087691.
Sequence A001481 (sum of two squares) is the union of {0}, this sequence and A004431 (sum of two distinct nonzero squares). These 4 sequences are all closed under multiplication. (End)

Crossrefs

Programs

  • PARI
    for(n=1,100000,fctrs=factor(n);c=1;for(i=1,matsize(fctrs)[1],p4=fctrs[i,1]%4;if(p4==1 || (p4==3 && fctrs[i,2]%2==1), c=0)); if(c,print1(n","))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 17 2007

Formula

Numbers of the form 2^e0 * 3^(2*e1) * 7^(2*e2) * 11^(2*e3) * ... * qk^(2*ek) where qk is the k-th prime of the form 4*n+3 (A002145). - Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 17 2007

A205507 a(n) = Fibonacci(n) * A004018(n) for n>=1 with a(0)=1, where A004018(n) is the number of ways of writing n as a sum of 2 squares.

Original entry on oeis.org

1, 4, 4, 0, 12, 40, 0, 0, 84, 136, 440, 0, 0, 1864, 0, 0, 3948, 12776, 10336, 0, 54120, 0, 0, 0, 0, 900300, 971144, 0, 0, 4113832, 0, 0, 8713236, 0, 45623096, 0, 59721408, 193262536, 0, 0, 818673240, 1324641128, 0, 0, 0, 9079225360, 0, 0, 0, 31114968196
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2012

Keywords

Comments

Compare to the g.f. of A004018 given by the Lambert series identity:
1 + 4*Sum_{n>=0} (-1)^n*x^(2*n+1)/(1 - x^(2*n+1)) = (1 + 2*Sum_{n>=1} x^(n^2))^2.

Examples

			G.f.: A(x) = 1 + 4*x + 4*x^2 + 12*x^4 + 40*x^5 + 84*x^8 + 136*x^9 + 440*x^10 +...
Compare the g.f to the square of the Jacobi theta_3 series:
theta_3(x)^2 = 1 + 4*x + 4*x^2 + 4*x^4 + 8*x^5 + 4*x^8 + 4*x^9 + 8*x^10 +...+ A004018(n)*x^n +...
The g.f. equals the sum:
A(x) = 1 + 4*x/(1-x-x^2) - 4*2*x^3/(1-4*x^3-x^6) + 4*5*x^5/(1-11*x^5-x^10) - 4*13*x^7/(1-29*x^7-x^14) + 4*34*x^9/(1-76*x^9-x^18) - 4*89*x^11/(1-199*x^11-x^22) + 4*233*x^13/(1-521*x^13-x^26) - 4*610*x^15/(1-1364*x^15-x^30) +...
which involves odd-indexed Fibonacci and Lucas numbers.
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Fibonacci[n]*SquaresR[2, n], {n,1,50}]] (* G. C. Greubel, Mar 05 2017 *)
  • PARI
    {A004018(n)=polcoeff((1+2*sum(k=1,sqrtint(n+1),x^(k^2),x*O(x^n)))^2,n)}
    {a(n)=if(n==0,1,fibonacci(n)*A004018(n))}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff((1+4*sum(m=0,n+1,(-1)^m*fibonacci(2*m+1)*x^(2*m+1)/(1-Lucas(2*m+1)*x^(2*m+1)-x^(4*m+2)+x*O(x^n)))),n)}

Formula

G.f.: 1 + 4*Sum_{n>=0} (-1)^n*Fibonacci(2*n+1)*x^(2*n+1) / (1 - Lucas(2*n+1)*x^(2*n+1) - x^(4*n+2)), where Lucas(n) = A000204(n).

A330315 a(n) = r(n)*r(n+1), where r(n) = A004018(n) is the number of ways of writing n as a sum of two squares.

Original entry on oeis.org

4, 16, 0, 0, 32, 0, 0, 0, 16, 32, 0, 0, 0, 0, 0, 0, 32, 32, 0, 0, 0, 0, 0, 0, 0, 96, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 32, 64, 0, 0, 0, 0, 0, 0, 32, 32, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 96
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2019

Keywords

Comments

a(n)=0 unless n == 0, 1 or 4 (mod 8).

References

  • H. Iwaniec. Spectral methods of automorphic forms, volume 53 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.

Crossrefs

Programs

  • Maple
    N:= 200: # for a(0)..a(N)
    g1:= 1 + 2*add(x^(i^2),i=1..floor(sqrt(N+1))):
    g2:= expand(g1^2):
    R:= [seq(coeff(g2,x,i),i=0..N+1)]:
    seq(R[i]*R[i+1],i=1..N+1); # Robert Israel, Jun 12 2020
  • Mathematica
    a[n_] := SquaresR[2, n] SquaresR[2, n + 1]; a /@ Range[0, 100] (* Giovanni Resta, Jun 12 2020 *)

A333167 a(n) = r_2(n^2 + 1), where r_2(k) is the number of ways of writing k as a sum of 2 squares (A004018).

Original entry on oeis.org

4, 4, 8, 8, 8, 8, 8, 12, 16, 8, 8, 8, 16, 16, 8, 8, 8, 16, 24, 8, 8, 16, 16, 16, 8, 8, 8, 16, 16, 8, 16, 16, 24, 16, 16, 8, 8, 16, 24, 8, 8, 12, 16, 24, 16, 8, 16, 32, 16, 8, 16, 8, 16, 16, 8, 16, 8, 32, 16, 8, 16, 8, 16, 16, 16, 8, 8, 16, 32, 8, 24, 8, 32, 32
Offset: 0

Views

Author

Amiram Eldar, Mar 09 2020

Keywords

Examples

			a(0) = r_2(0^2 + 1) = r_2(1) = A004018(1) = 4.
		

References

  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 166.

Crossrefs

Programs

  • Mathematica
    Table[SquaresR[2, k^2 + 1], {k, 0, 100}]

Formula

a(n) = A004018(A002522(n)).

A205508 a(n) = Pell(n) * A004018(n) for n>=1 with a(0)=1, where A004018(n) is the number of ways of writing n as a sum of 2 squares.

Original entry on oeis.org

1, 4, 8, 0, 48, 232, 0, 0, 1632, 3940, 19024, 0, 0, 267688, 0, 0, 1883328, 9093512, 10976840, 0, 127955424, 0, 0, 0, 0, 15740857452, 25334527696, 0, 0, 356483857192, 0, 0, 2508054264192, 0, 29236023007504, 0, 85200014758320, 411382062287848, 0, 0, 5788584895037376
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2012

Keywords

Comments

Compare to the g.f. of A004018 given by the Lambert series identity:
1 + 4*Sum_{n>=0} (-1)^n*x^(2*n+1)/(1 - x^(2*n+1)) = (1 + 2*Sum_{n>=1} x^(n^2))^2.

Examples

			 G.f.: A(x) = 1 + 4*x + 8*x^2 + 48*x^4 + 232*x^5 + 1632*x^8 + 3940*x^9 + 19024*x^10 +...
Compare the g.f to the square of the Jacobi theta_3 series:
theta_3(x)^2 = 1 + 4*x + 4*x^2 + 4*x^4 + 8*x^5 + 4*x^8 + 4*x^9 + 8*x^10 +...+ A004018(n)*x^n +...
The g.f. equals the sum:
A(x) = 1 + 4*x/(1-2*x-x^2) - 4*5*x^3/(1-14*x^3-x^6) + 4*29*x^5/(1-82*x^5-x^10) - 4*169*x^7/(1-478*x^7-x^14) + 4*985*x^9/(1-2786*x^9-x^18) - 4*5741*x^11/(1-16238*x^11-x^22) + 4*33461*x^13/(1-94642*x^13-x^26) - 4*195025*x^15/(1-551614*x^15-x^30) +...
which involves odd-indexed Pell and companion Pell numbers.
		

Crossrefs

Programs

  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff((1+4*sum(m=0,n+1,(-1)^m*Pell(2*m+1)*x^(2*m+1)/(1-A002203(2*m+1)*x^(2*m+1)-x^(4*m+2)+x*O(x^n))))^(1/1),n)}

Formula

G.f.: 1 + 4*Sum_{n>=0} (-1)^n*Pell(2*n+1)*x^(2*n+1) / (1 - A002203(2*n+1)*x^(2*n+1) - x^(4*n+2)), where A002203 is the companion Pell numbers.

A222882 Decimal expansion of Sierpiński's second constant, K2 = lim_{n->oo} ((1/n) * (Sum_{i=1..n} A004018(i^2)) - 4/Pi * log(n)).

Original entry on oeis.org

2, 2, 5, 4, 9, 2, 2, 4, 6, 2, 8, 8, 8, 2, 6, 4, 7, 6, 6, 2, 6, 8, 1, 8, 4, 7, 5, 9, 5, 2, 8, 7, 2, 3, 5, 5, 7, 8, 7, 1, 6, 6, 1, 5, 9, 8, 6, 0, 5, 3, 5, 1, 8, 8, 9, 1, 3, 8, 3, 1, 1, 6, 1, 8, 8, 5, 9, 1, 7, 2, 9, 2, 8, 9, 5, 9, 7, 1, 3, 9, 3, 4, 1, 0, 5, 8
Offset: 1

Views

Author

Ant King, Mar 11 2013

Keywords

Comments

Sierpiński introduced three constants in his 1908 doctoral thesis. The first, K, is very well known, bears his name and its decimal expansion is given in A062089. However, the second and third of these constants appear to have been largely forgotten. This sequence gives the decimal expansion of the second one, K2, and A222883 gives the decimal expansion of the third , K3. The formula given below show that K2 is related to several other, naturally occurring constants.

Examples

			K2 = 2.25492246288826476626818475952872355787166159860535188913831...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopaedia of Mathematics and its Applications, Cambridge University Press (2003), p.123. Corrigenda in the link below.

Crossrefs

Programs

  • Mathematica
    Take[Flatten[RealDigits[N[4(12 Log[Gamma[3/4]]-9 Log[Pi]+72 Log[Glaisher]-5 Log[2]+3 EulerGamma-3)/(3 Pi),100]]],86]
  • PARI
    4/Pi*(log(exp(3*Euler-1)/(2^(2/3)/agm(sqrt(2),1)^2)) - 12/Pi^2*zeta'(2)) \\ Charles R Greathouse IV, Dec 12 2013

Formula

K2 = 4 / Pi * (eulergamma + K / Pi - 12 / Pi^2 * zeta'(2) + log(2) / 3 -1), where K is Sierpiński's first constant (A062089) and eulergamma is the Euler-Mascheroni constant (A001620).
K2 = 4 * (12 * log(Gamma(3/4)) - 9*log(Pi) + 72*log(A) - 5*log(2) + 3 * eulergamma - 3) / (3 * Pi), where A is the Glaisher-Kinkelin constant (A074962).
K2 = 4 * (12 * log(Gamma(3/4)) + log(A^72 * e^(3*eulergamma - 3) / (32 * Pi^9))) / (3 * Pi).
K2 = 4 / Pi * (log(e^(3*eulergamma - 1) / (2^(2/3) * G^2)) - 12 / Pi^2 * zeta'(2)), where G is Gauss’ AGM constant (A014549).
K2 = 4 / Pi * (log(Pi^2 * e^(3*eulergamma - 1) / (2^(2/3) * L^2)) - 12 / Pi^2 * zeta'(2)), where L is Gauss’ lemniscate constant (A062539).

Extensions

Minor edits by Vaclav Kotesovec, Nov 14 2014

A222883 Decimal expansion of Sierpiński's third constant, K3 = lim_{n->oo} ((1/n) * (Sum_{i=1..n} (A004018(i))^2) - 4* log(n)).

Original entry on oeis.org

8, 0, 6, 6, 4, 8, 6, 1, 8, 2, 9, 3, 3, 6, 3, 2, 4, 6, 1, 0, 5, 1, 1, 8, 7, 4, 3, 8, 8, 6, 0, 4, 6, 1, 7, 0, 5, 8, 0, 0, 7, 3, 6, 7, 1, 0, 0, 9, 4, 5, 8, 9, 9, 2, 2, 4, 4, 3, 6, 7, 7, 1, 3, 3, 7, 9, 1, 2, 5, 7, 3, 6, 6, 4, 6, 4, 7, 3, 1, 1, 4, 9, 0, 2, 1, 6, 5, 4, 0, 5, 5, 9, 3, 2, 2, 4, 7, 2, 1, 6, 7, 8, 1, 5, 1
Offset: 1

Views

Author

Ant King, Mar 11 2013

Keywords

Comments

Sierpiński introduced three constants in his 1908 doctoral thesis. The first, K, is very well known, bears his name and its decimal expansion is given in A062089. However, the second and third of these constants appear to have been largely forgotten. This sequence gives the decimal expansion of the third one, K3, and A222882 gives the decimal expansion of the second one, K2. The formula given below show that K3 is related to several other, naturally occurring constants including K and K2.

Examples

			K3 = 8.066486182933632461051187438860461705800736710094589922443677...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopaedia of Mathematics and its Applications, Cambridge University Press (2003), p.123. Corrigenda in the link below.

Crossrefs

Programs

  • Mathematica
    Take[RealDigits[N[4/3 (24*Log[Gamma[3/4]] - 12*Log[Pi] + 72*Log[Glaisher] - 5*Log[2] + 6*EulerGamma - 3), 100]][[1]], 86]
  • PARI
    4*log(exp(5*Euler-1)/(2^(5/3)/agm(sqrt(2),1)^4))-48/Pi^2*zeta'(2) - 4*Euler \\ Charles R Greathouse IV, Dec 12 2013

Formula

K3 = 8*K / Pi - 48 / Pi^2 * zeta'(2) + 4 * log(2) / 3 - 4, where K is Sierpinski's first constant (A062089).
K3 = 4 / 3 * log(A^72 * e^(6 * eulergamma - 3)*( Gamma(3/4))^24 / (32 * pi^12)), where A is the Glaisher-Kinkelin constant (A074962) and eulergamma is the Euler-Mascheroni constant (A001620).
K3 = 4*log(exp(5*eulergamma - 1) / (2^(5 / 3) * G^4)) - 48 / Pi^2 * zeta'(2) - 4* eulergamma, where G is Gauss’ AGM constant (A014549).
K3 = 4*log(Pi^4 * e^(5*eulergamma - 1) / (2^(5 / 3) * L^4)) - 48 / Pi^2 * zeta'(2) - 4* eulergamma, where L is Gauss’ lemniscate constant (A062539).
K3 = 4*K / Pi + Pi * K2 - 4 * eulergamma, where K2 is Sierpiński's second constant (A222882).
1 / 4 * K3 - 1 / 4 * Pi * K2 - log(pi^2 / (2 * L^2)) = eulergamma.
1 / 4 * K3 - 1 / 4 * Pi * K2 + log(2 * G^2) = eulergamma.

Extensions

More terms from Robert G. Wilson v, Oct 19 2013

A330316 a(n) = r(n)*r(n+1)/4, where r(n) = A004018(n) is the number of ways of writing n as a sum of two squares.

Original entry on oeis.org

1, 4, 0, 0, 8, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 8, 16, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 24
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2019

Keywords

References

  • H. Iwaniec. Spectral methods of automorphic forms, volume 53 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.

Crossrefs

Programs

  • Mathematica
    Times@@#/4&/@Partition[SquaresR[2,Range[0,110]],2,1] (* Harvey P. Dale, May 30 2020 *)

A330317 a(n) = Sum_{i=0..n} r(i)*r(i+1), where r(n) = A004018(n) is the number of ways of writing n as a sum of two squares.

Original entry on oeis.org

4, 20, 20, 20, 52, 52, 52, 52, 68, 100, 100, 100, 100, 100, 100, 100, 132, 164, 164, 164, 164, 164, 164, 164, 164, 260, 260, 260, 260, 260, 260, 260, 260, 260, 260, 260, 292, 292, 292, 292, 356, 356, 356, 356, 356, 356, 356, 356, 356, 404, 404, 404, 468, 468, 468, 468, 468, 468, 468, 468, 468, 468, 468, 468, 532, 532, 532
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2019

Keywords

References

  • H. Iwaniec. Spectral methods of automorphic forms, volume 53 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.

Crossrefs

Partial sums of A330315.

A330318 a(n) = Sum_{i=0..n} r(i)*r(i+1)/4, where r(n) = A004018(n) is the number of ways of writing n as a sum of two squares.

Original entry on oeis.org

1, 5, 5, 5, 13, 13, 13, 13, 17, 25, 25, 25, 25, 25, 25, 25, 33, 41, 41, 41, 41, 41, 41, 41, 41, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 73, 73, 73, 73, 89, 89, 89, 89, 89, 89, 89, 89, 89, 101, 101, 101, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2019

Keywords

References

  • H. Iwaniec. Spectral methods of automorphic forms, volume 53 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.

Crossrefs

Partial sums of A330316.
Showing 1-10 of 124 results. Next