cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A205507 a(n) = Fibonacci(n) * A004018(n) for n>=1 with a(0)=1, where A004018(n) is the number of ways of writing n as a sum of 2 squares.

Original entry on oeis.org

1, 4, 4, 0, 12, 40, 0, 0, 84, 136, 440, 0, 0, 1864, 0, 0, 3948, 12776, 10336, 0, 54120, 0, 0, 0, 0, 900300, 971144, 0, 0, 4113832, 0, 0, 8713236, 0, 45623096, 0, 59721408, 193262536, 0, 0, 818673240, 1324641128, 0, 0, 0, 9079225360, 0, 0, 0, 31114968196
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2012

Keywords

Comments

Compare to the g.f. of A004018 given by the Lambert series identity:
1 + 4*Sum_{n>=0} (-1)^n*x^(2*n+1)/(1 - x^(2*n+1)) = (1 + 2*Sum_{n>=1} x^(n^2))^2.

Examples

			G.f.: A(x) = 1 + 4*x + 4*x^2 + 12*x^4 + 40*x^5 + 84*x^8 + 136*x^9 + 440*x^10 +...
Compare the g.f to the square of the Jacobi theta_3 series:
theta_3(x)^2 = 1 + 4*x + 4*x^2 + 4*x^4 + 8*x^5 + 4*x^8 + 4*x^9 + 8*x^10 +...+ A004018(n)*x^n +...
The g.f. equals the sum:
A(x) = 1 + 4*x/(1-x-x^2) - 4*2*x^3/(1-4*x^3-x^6) + 4*5*x^5/(1-11*x^5-x^10) - 4*13*x^7/(1-29*x^7-x^14) + 4*34*x^9/(1-76*x^9-x^18) - 4*89*x^11/(1-199*x^11-x^22) + 4*233*x^13/(1-521*x^13-x^26) - 4*610*x^15/(1-1364*x^15-x^30) +...
which involves odd-indexed Fibonacci and Lucas numbers.
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Fibonacci[n]*SquaresR[2, n], {n,1,50}]] (* G. C. Greubel, Mar 05 2017 *)
  • PARI
    {A004018(n)=polcoeff((1+2*sum(k=1,sqrtint(n+1),x^(k^2),x*O(x^n)))^2,n)}
    {a(n)=if(n==0,1,fibonacci(n)*A004018(n))}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff((1+4*sum(m=0,n+1,(-1)^m*fibonacci(2*m+1)*x^(2*m+1)/(1-Lucas(2*m+1)*x^(2*m+1)-x^(4*m+2)+x*O(x^n)))),n)}

Formula

G.f.: 1 + 4*Sum_{n>=0} (-1)^n*Fibonacci(2*n+1)*x^(2*n+1) / (1 - Lucas(2*n+1)*x^(2*n+1) - x^(4*n+2)), where Lucas(n) = A000204(n).

A209444 a(n) = Pell(n)*A000143(n) for n>=1 with a(0)=1, where A000143(n) is the number of ways of writing n as a sum of 8 squares.

Original entry on oeis.org

1, 16, 224, 2240, 13632, 58464, 219520, 930176, 3805824, 11930320, 33558336, 122352192, 440858880, 1176756448, 3112368896, 11008771200, 35248366848, 89371035936, 232665100640, 727171963840, 2289378446208, 5950875374080, 13907284255872, 43816224486528
Offset: 0

Views

Author

Paul D. Hanna, Mar 09 2012

Keywords

Comments

Compare g.f. to the Lambert series of A000143: 1 + 16*Sum_{n>=1} n^3*x^n/(1 - (-x)^n).

Examples

			G.f.: A(x) = 1 + 16*x + 112*x^2 + 896*x^3 + 3408*x^4 + 10080*x^5 +...
where A(x) = 1 + 1*16*x + 2*112*x^2 + 5*448*x^3 + 12*1136*x^4 + 29*2016*x^5 + 70*3136*x^6 + 169*5504*x^7 + 408*9328*x^8 +...+ Pell(n)*A000143(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 16*( 1*1*x/(1+2*x-x^2) + 2*8*x^2/(1-6*x^2+x^4) + 5*27*x^3/(1+14*x^3-x^6) + 12*64*x^4/(1-34*x^4+x^8) + 29*125*x^5/(1+82*x^5-x^10) + 70*216*x^6/(1-198*x^6+x^12) + 169*343*x^7/(1+478*x^7-x^14) +...).
		

Crossrefs

Programs

  • Mathematica
    A000143:= Table[SquaresR[8, n], {n, 0, 200}]; Join[{1}, Table[Fibonacci[n, 2]*A000143[[n + 1]], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2018 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1+16*sum(m=1,n,Pell(m)*m^3*x^m/(1-A002203(m)*(-x)^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
    for(n=0,31,print1(a(n),", "))

Formula

G.f.: 1 + 16*Sum_{n>=1} Pell(n)*n^3*x^n/(1 - A002203(n)*(-x)^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).

A209443 a(n) = Pell(n)*A000118(n) for n>=1 with a(0)=1, where A000118(n) is the number of ways of writing n as a sum of 4 squares.

Original entry on oeis.org

1, 8, 48, 160, 288, 1392, 6720, 10816, 9792, 102440, 342432, 551136, 1330560, 3747632, 15510144, 37444800, 11299968, 163683216, 856193520, 1060017440, 2303197632, 9885175040, 26848039104, 43211266752, 52160613120, 325311054008, 1064050163232, 2446518414400
Offset: 0

Views

Author

Paul D. Hanna, Mar 09 2012

Keywords

Comments

Compare g.f. to the Lambert series of A000118: 1 + 8*Sum_{n>=1} n*x^n/(1+(-x)^n).

Examples

			G.f.: A(x) = 1 + 8*x + 48*x^2 + 160*x^3 + 288*x^4 + 1392*x^5 + 6720*x^6 +...
where A(x) = 1 + 1*8*x + 2*24*x^2 + 5*32*x^3 + 12*24*x^4 + 29*48*x^5 + 70*96*x^6 + 169*64*x^7 + 408*24*x^8 +...+ Pell(n)*A000118(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 8*( 1*1*x/(1-2*x-x^2) + 2*2*x^2/(1+6*x^2+x^4) + 5*3*x^3/(1-14*x^3-x^6) + 12*4*x^4/(1+34*x^4+x^8) + 29*5*x^5/(1-82*x^5-x^10) + 70*6*x^6/(1+198*x^6+x^12) + 169*7*x^7/(1-478*x^7-x^14) +...).
		

Crossrefs

Programs

  • Mathematica
    A000118[n_]:= If[n < 1, Boole[n == 0], 8*Sum[If[Mod[d, 4] > 0, d, 0], {d, Divisors@n}]]; Join[{1}, Table[Fibonacci[n, 2]*A000118[n], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2018 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1+8*sum(m=1,n,Pell(m)*m*x^m/(1+A002203(m)*(-x)^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: 1 + 8*Sum_{n>=1} Pell(n)*n*x^n/(1 + A002203(n)*(-x)^n + (-1)^n*x^(2*n)).
Showing 1-3 of 3 results.