cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A205964 a(n) = Fibonacci(n)*A000143(n) for n>=1 with a(0)=1, where A000143(n) is the number of ways of writing n as a sum of 8 squares.

Original entry on oeis.org

1, 16, 112, 896, 3408, 10080, 25088, 71552, 195888, 411808, 776160, 1896768, 4580352, 8194144, 14525056, 34433280, 73890768, 125562528, 219081856, 458906560, 968315040, 1686909952, 2642197824, 5579174016, 12110579712, 18907500400, 29884043168, 64236542720
Offset: 0

Views

Author

Paul D. Hanna, Feb 03 2012

Keywords

Comments

Compare g.f. to the Lambert series of A000143: 1 + 16*Sum_{n>=1} n^3*x^n/(1 - (-x)^n).

Examples

			G.f.: A(x) = 1 + 16*x + 112*x^2 + 896*x^3 + 3408*x^4 + 10080*x^5 +...
where A(x) = 1 + 1*16*x + 1*112*x^2 + 2*448*x^3 + 3*1136*x^4 + 5*2016*x^5 + 8*3136*x^6 + 13*5504*x^7 + 21*9328*x^8 +...+ Fibonacci(n)*A000143(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 16*( 1*1*x/(1+x-x^2) + 1*8*x^2/(1-3*x^2+x^4) + 2*27*x^3/(1+4*x^3-x^6) + 3*64*x^4/(1-7*x^4+x^8) + 5*125*x^5/(1+11*x^5-x^10) + 8*216*x^6/(1-18*x^6+x^12) + 13*343*x^7/(1+29*x^7-x^14) +...).
		

Crossrefs

Cf. A209444 (Pell variant).

Programs

  • Mathematica
    Join[{1}, Table[Fibonacci[n]*SquaresR[8, n], {n,1,30}]] (* G. C. Greubel, Mar 05 2017 *)
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1+16*sum(m=1,n,fibonacci(m)*m^3*x^m/(1-Lucas(m)*(-x)^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
    for(n=0,31,print1(a(n),", "))

Formula

G.f.: 1 + 16*Sum_{n>=1} Fibonacci(n)*n^3*x^n/(1 - Lucas(n)*(-x)^n + (-1)^n*x^(2*n)).

A209443 a(n) = Pell(n)*A000118(n) for n>=1 with a(0)=1, where A000118(n) is the number of ways of writing n as a sum of 4 squares.

Original entry on oeis.org

1, 8, 48, 160, 288, 1392, 6720, 10816, 9792, 102440, 342432, 551136, 1330560, 3747632, 15510144, 37444800, 11299968, 163683216, 856193520, 1060017440, 2303197632, 9885175040, 26848039104, 43211266752, 52160613120, 325311054008, 1064050163232, 2446518414400
Offset: 0

Views

Author

Paul D. Hanna, Mar 09 2012

Keywords

Comments

Compare g.f. to the Lambert series of A000118: 1 + 8*Sum_{n>=1} n*x^n/(1+(-x)^n).

Examples

			G.f.: A(x) = 1 + 8*x + 48*x^2 + 160*x^3 + 288*x^4 + 1392*x^5 + 6720*x^6 +...
where A(x) = 1 + 1*8*x + 2*24*x^2 + 5*32*x^3 + 12*24*x^4 + 29*48*x^5 + 70*96*x^6 + 169*64*x^7 + 408*24*x^8 +...+ Pell(n)*A000118(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 8*( 1*1*x/(1-2*x-x^2) + 2*2*x^2/(1+6*x^2+x^4) + 5*3*x^3/(1-14*x^3-x^6) + 12*4*x^4/(1+34*x^4+x^8) + 29*5*x^5/(1-82*x^5-x^10) + 70*6*x^6/(1+198*x^6+x^12) + 169*7*x^7/(1-478*x^7-x^14) +...).
		

Crossrefs

Programs

  • Mathematica
    A000118[n_]:= If[n < 1, Boole[n == 0], 8*Sum[If[Mod[d, 4] > 0, d, 0], {d, Divisors@n}]]; Join[{1}, Table[Fibonacci[n, 2]*A000118[n], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2018 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1+8*sum(m=1,n,Pell(m)*m*x^m/(1+A002203(m)*(-x)^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: 1 + 8*Sum_{n>=1} Pell(n)*n*x^n/(1 + A002203(n)*(-x)^n + (-1)^n*x^(2*n)).

A209445 a(n) = Pell(n)*A001227(n) for n >= 1, where A001227(n) is the number of odd divisors of n.

Original entry on oeis.org

1, 2, 10, 12, 58, 140, 338, 408, 2955, 4756, 11482, 27720, 66922, 161564, 780100, 470832, 2273378, 8232630, 13250218, 31988856, 154455860, 186444716, 450117362, 1086679440, 3935214363, 6333631924, 30581480180, 36915112104, 89120964298, 430314081400, 519435045698
Offset: 1

Views

Author

Paul D. Hanna, Mar 09 2012

Keywords

Comments

Compare g.f. to the Lambert series of A001227: Sum_{n>=1} x^(2*n-1)/(1 - x^(2*n-1)).

Examples

			G.f.: A(x) = x + 2*x^2 + 10*x^3 + 12*x^4 + 58*x^5 + 140*x^6 + 338*x^7 + ...
where A(x) = 1*1*x + 2*1*x^2 + 5*2*x^3 + 12*1*x^4 + 29*2*x^5 + 70*2*x^6 + 169*2*x^7 + 408*1*x^8 + ... + Pell(n)*A001227(n)*x^n + ...
The g.f. is also given by the identity:
A(x) = 1*x/(1-2*x-x^2) + 5*x^3/(1-14*x^3-x^6) + 29*x^5/(1-82*x^5-x^10) + 169*x^7/(1-478*x^7-x^14) + 985*x^9/(1-2786*x^9-x^18) + 5741*x^11/(1-16238*x^11-x^22) + ...
which involves odd-indexed Pell and A002203 numbers.
		

Crossrefs

Programs

  • Mathematica
    A001227[n_]:= Sum[Mod[d, 2], {d, Divisors[n]}]; Table[Fibonacci[n, 2]*A001227[n], {n, 1, 1000}] (* G. C. Greubel, Jan 02 2018 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(sum(m=1,n,Pell(2*m-1)*x^(2*m-1)/(1-A002203(2*m-1)*x^(2*m-1)-x^(4*m-2)+x*O(x^n))),n)}
    for(n=1,40,print1(a(n),", "))

Formula

G.f.: Sum_{n>=1} Pell(2*n-1)*x^(2*n-1)/(1 - A002203(2*n-1)*x^(2*n-1)-x^(4*n-2)), where A002203(n) = Pell(n-1) + Pell(n+1).
Showing 1-3 of 3 results.