A370469 Triangle read by columns where T(n,k) is the number of points in Z^n such that |x1| + ... + |xn| = k, |x1|, ..., |xn| > 0.
2, 2, 4, 2, 8, 8, 2, 12, 24, 16, 2, 16, 48, 64, 32, 2, 20, 80, 160, 160, 64, 2, 24, 120, 320, 480, 384, 128, 2, 28, 168, 560, 1120, 1344, 896, 256, 2, 32, 224, 896, 2240, 3584, 3584, 2048, 512, 2, 36, 288, 1344, 4032, 8064, 10752, 9216, 4608, 1024
Offset: 1
Examples
n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ----------------------------------------------------------------------- 1 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 4 8 12 16 20 24 28 32 36 40 44 48 52 56 3 | 8 24 48 80 120 168 224 288 360 440 528 624 728 4 | 16 64 160 320 560 896 1344 1920 2640 3520 4576 5824 5 | 32 160 480 1120 2240 4032 6720 10560 15840 22880 32032 6 | 64 384 1344 3584 8064 16128 29568 50688 82368 128128 7 | 128 896 3584 10752 26880 59136 118272 219648 384384 8 | 256 2048 9216 30720 84480 202752 439296 878592 9 | 512 4608 23040 84480 253440 658944 1537536 10 | 1024 10240 56320 225280 732160 2050048 11 | 2048 22528 135168 585728 2050048 12 | 4096 49152 319488 1490944 13 | 8192 106496 745472 14 | 16384 229376 15 | 32768 The cross polytope in Z^3 (the octahedron) with points at distance 3 from the origin has 8 triangle facets, each with edge length 4. There is one point in the center of each triangle with coordinates (+-1,+-1,+-1).
Crossrefs
Programs
-
Mathematica
T[n_,k_]:=Binomial[k-1,n-1]*2^n; Table[T[n,k],{k,10},{n,k}]//Flatten
-
Python
from math import comb def A370469_T(n,k): return comb(k-1,n-1)<
Chai Wah Wu, Apr 25 2024
Formula
T(n,k) = binomial(k-1,n-1)*2^n.
G.f.: 2*x*y/(1 - y - 2*x*y). - Stefano Spezia, Apr 27 2024
Comments