A332188 a(n) = (1/e^n) * Sum_{j>=2} j^n * n^j / (j-2)!.
0, 3, 72, 1557, 36928, 986550, 29641608, 994006209, 36887753216, 1502798312547, 66730937637400, 3209318261685690, 166242143849148864, 9229638177763268395, 546842961612529341032, 34443269219453881669425
Offset: 0
Keywords
Examples
a(3) = 1557 = (1/e^3) * Sum_{j>=2} j^3 * 3^j / factorial(j-2).
Programs
-
Mathematica
a[n_] := Sum[n^k*(StirlingS2[n + 2, k] - StirlingS2[n + 1, k]), {k, 2, n + 2}]; Array[a, 16, 0] (* Amiram Eldar, Oct 30 2020 *)
-
PARI
a(n) = sum(k=0, n+2, n^k*(stirling(n+2,k,2) - stirling(n+1,k,2))); \\ Michel Marcus, Oct 30 2020
-
SageMath
# Increase precision for larger n! R = RealField(100) t = 2 sol = [0]*18 for n in range(0, 18): suma = R(0) for j in range(t, 1000): suma += (j^n * n^j) / factorial(j - t) suma *= exp(-n) sol[n] = round(suma) print(sol) # Thanks to Peter Luschny for his example in A338282.
Formula
a(n) = Sum_{k=0..n+2} n^k*(Stirling2(n+2,k) - Stirling2(n+1,k)). [Thanks to Andrew Howroyd for his example in A338282]
Comments