A290890
p-INVERT of the positive integers, where p(S) = 1 - S^2.
Original entry on oeis.org
0, 1, 4, 11, 28, 72, 188, 493, 1292, 3383, 8856, 23184, 60696, 158905, 416020, 1089155, 2851444, 7465176, 19544084, 51167077, 133957148, 350704367, 918155952, 2403763488, 6293134512, 16475640049, 43133785636, 112925716859, 295643364940, 774004377960
Offset: 0
(See the examples at A289780.)
-
z = 60; s = x/(1 - x)^2; p = 1 - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290890 *)
A291000
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3.
Original entry on oeis.org
1, 3, 9, 26, 74, 210, 596, 1692, 4804, 13640, 38728, 109960, 312208, 886448, 2516880, 7146144, 20289952, 57608992, 163568448, 464417728, 1318615104, 3743926400, 10630080640, 30181847168, 85694918912, 243312448256, 690833811712, 1961475291648, 5569190816256
Offset: 0
-
z = 60; s = x/(1 - x); p = 1 - s - s^2 - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291000 *)
A081696
Expansion of 1/(x + sqrt(1-4x)).
Original entry on oeis.org
1, 1, 3, 9, 29, 97, 333, 1165, 4135, 14845, 53791, 196417, 721887, 2667941, 9907851, 36950465, 138320021, 519515209, 1957091277, 7392602917, 27992976565, 106236268337, 404005515873, 1539293204549, 5875059106769, 22459721336977
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- Ron M. Adin, Arkady Berenstein, Jacob Greenstein, Jian-Rong Li, Avichai Marmor, and Yuval Roichman, Transitive and Gallai colorings, arXiv:2309.11203 [math.CO], 2023. See p. 25.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
- Paul Barry and Arnauld Mesinga Mwafise, Classical and Semi-Classical Orthogonal Polynomials Defined by Riordan Arrays, and Their Moment Sequences, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.5.
- Edward A. Bender, Gregory F. Lawler, Robin Pemantle and Herbert S. Wilf, Irreducible compositions and the first return to the origin of a random walk, arXiv:math/0404253 [math.CO], 2004.
- Edward A. Bender, Gregory F. Lawler, Robin Pemantle and Herbert S. Wilf, Irreducible compositions and the first return to the origin of a random walk, Sem. Lothar. 50 (2004) B50h.
- David Callan, An identity for the central binomial coefficient, arXiv preprint arXiv:1206.3174 [math.CO], 2012. - From _N. J. A. Sloane_, Nov 25 2012
- G. Chatel and V. Pilaud, Cambrian Hopf Algebras, arXiv:1411.3704 [math.CO], 2014-2015.
- Ivan Dimitrov, Cole Gigliotti, Etan Ossip, Charles Paquette, and David Wehlau, Inversion Sets and Quotient Root Systems, arXiv:2310.16767 [math.CO], 2023.
- A. Umar, Some combinatorial problems in the theory of symmetric ..., Algebra Disc. Math. 9 (2010) 115-126.
-
y[n_] := y[n] = (2*(4*n - 3)*y[n - 1] - (15*n - 24)*y[n - 2] - (4*n - 6)*y[n - 3])/n; y[0] = 1; y[1] = 1; y[2] = 3; (* corrected by Wouter Meeussen, Apr 30 2011 *)
CoefficientList[Series[1/(x+Sqrt[1-4x] ),{x,0,30}],x] (* Harvey P. Dale, May 05 2021 *)
-
makelist(sum(binomial(2*n-k,n+k)*(3*k+1)/(n+k+1),k,0,n),n,0,12); /* Emanuele Munarini, Apr 02 2011 */
-
x='x+O('x^66); Vec(1/(x+sqrt(1-4*x))) \\ Joerg Arndt, Jul 06 2013
Wouter credited with first sums in Gosper's FORMULA Comment, which were mistyped by NJAS (caught by Julian Ziegler Hunts), May 14 2011
A039717
Row sums of convolution triangle A030523.
Original entry on oeis.org
1, 4, 15, 55, 200, 725, 2625, 9500, 34375, 124375, 450000, 1628125, 5890625, 21312500, 77109375, 278984375, 1009375000, 3651953125, 13212890625, 47804687500, 172958984375, 625771484375, 2264062500000, 8191455078125
Offset: 1
-
CoefficientList[Series[(1 - x) / (1 - 5 x + 5 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
-
Vec(x*(1-x)/(1-5*x+5*x^2) + O(x^40)) \\ Altug Alkan, Nov 20 2015
A290995
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^8.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 8, 36, 120, 330, 792, 1716, 3432, 6436, 11456, 19584, 32640, 54264, 93024, 170544, 341088, 735472, 1653632, 3749760, 8386560, 18289440, 38724480, 79594560, 159189120, 311058496, 597137408, 1133991936, 2147450880, 4089171840
Offset: 0
-
R:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0,0,0] cat Coefficients(R!( x^7/((1-x)^8 - x^8) )); // G. C. Greubel, Apr 11 2023
-
z = 60; s = x/(1 - x); p = 1 - s^8;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290995 *)
-
concat(vector(7), Vec(x^7 / ((1 - 2*x)*(1 - 2*x + 2*x^2)*(1 - 4*x + 6*x^2 - 4*x^3 + 2*x^4)) + O(x^50))) \\ Colin Barker, Aug 22 2017
-
def A290995_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x^7/((1-x)^8 - x^8) ).list()
A290995_list(60) # G. C. Greubel, Apr 11 2023
A290990
p-INVERT of the nonnegative integers (A000027), where p(S) = 1 - S - S^2.
Original entry on oeis.org
0, 1, 2, 5, 12, 28, 64, 145, 328, 743, 1686, 3830, 8704, 19781, 44950, 102133, 232048, 527208, 1197808, 2721421, 6183108, 14048151, 31917714, 72517738, 164761792, 374342057, 850512458, 1932380869, 4390407092, 9975090996, 22663602720, 51492150953
Offset: 0
-
I:=[0,1,2,5]; [n le 4 select I[n] else 4*Self(n-1) -5*Self(n-2) +2*Self(n-3) +Self(n-4): n in [1..50]]; // G. C. Greubel, Apr 12 2023
-
z = 60; s = x^2/(1-x)^2; p = 1 -s -s^2;
Drop[CoefficientList[Series[s, {x,0,z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x,0,z}], x], 1] (* A290990 *)
LinearRecurrence[{4,-5,2,1}, {0,1,2,5}, 50] (* G. C. Greubel, Apr 12 2023 *)
-
concat(0, Vec(x*(1-2*x+2*x^2)/(1-4*x+5*x^2-2*x^3-x^4) + O(x^50))) \\ Colin Barker, Aug 24 2017
-
@CachedFunction
def a(n): # a = A290990
if (n<4): return (0,1,2,5)[n]
else: return 4*a(n-1) -5*a(n-2) +2*a(n-3) +a(n-4)
[a(n) for n in range(51)] # G. C. Greubel, Apr 12 2023
A290998
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^3 - S^4.
Original entry on oeis.org
0, 0, 1, 4, 10, 21, 43, 92, 205, 462, 1035, 2301, 5099, 11303, 25088, 55728, 123800, 274969, 610628, 1355970, 3011157, 6686979, 14850196, 32978725, 73237462, 162641499, 361184653, 802098203, 1781254927, 3955712256, 8784625824, 19508406192, 43323176177
Offset: 0
From _Enrique Navarrete_, Dec 25 2023: (Start)
Since there are binomial(3,3) = 1 type of 3, binomial(4,3) = 4 types of 4, binomial(5,3) = 10 types of 5, binomial(6,3) = 20 types of 6, and binomial(9,3) = 84 types of 9, we can write 9 in the following ways:
9 in 84 ways;
6+3 in 20 ways;
5+4 in 40 ways;
4+5 in 40 ways;
3+6 in 20 ways;
3+3+3 in 1 way, for a total of 205 ways. (End)
-
I:=[0,0,1,4]; [n le 4 select I[n] else 4*Self(n-1) -6*Self(n-2) +5*Self(n-3) -Self(n-4): n in [1..41]]; // G. C. Greubel, Apr 25 2023
-
z = 60; s = x/(1 - x); p = 1 - s^3 - s^4;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* this sequence *)
LinearRecurrence[{4,-6,5,-1}, {0,0,1,4}, 41] (* G. C. Greubel, Apr 25 2023 *)
-
concat(vector(2), Vec(x^2 / (1 - 4*x + 6*x^2 - 5*x^3 + x^4) + O(x^50))) \\ Colin Barker, Aug 22 2017
-
def A290998_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x^2/(1-4*x+6*x^2-5*x^3+x^4) ).list()
A290998_list(40) # G. C. Greubel, Apr 25 2023
A289975
p-INVERT of the Fibonacci numbers (A000045, including 0), where p(S) = 1 - S - S^2.
Original entry on oeis.org
0, 1, 1, 4, 7, 18, 37, 85, 183, 407, 888, 1956, 4284, 9409, 20630, 45270, 99289, 217819, 477776, 1048053, 2298912, 5042783, 11061455, 24263687, 53223023, 116746272, 256086074, 561731936, 1232174181, 2702807740, 5928681960, 13004724921, 28526216361
Offset: 0
-
z = 60; s = x^2/(1 - x - x^2); p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000045 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289975 *)
A290991
p-INVERT of (0,0,1,2,3,4,5,...), the nonnegative integers A000027 preceded by one zero, where p(S) = 1 - S - S^2.
Original entry on oeis.org
0, 0, 1, 2, 3, 6, 13, 26, 50, 96, 184, 351, 669, 1278, 2447, 4692, 9004, 17285, 33182, 63687, 122208, 234461, 449774, 862776, 1655010, 3174766, 6090231, 11683285, 22413104, 42997349, 82486280, 158241688, 303570021, 582365698, 1117202719, 2143225358
Offset: 0
-
z = 60; s = x^3/(1 - x)^2; p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* 0,0,1,2,3,4,5,... *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290991 *)
-
concat(vector(2), Vec(x^2*(1 - 2*x + x^2 + x^3) / (1 - 4*x + 6*x^2 - 5*x^3 + 3*x^4 - x^5 - x^6) + O(x^40))) \\ Colin Barker, Aug 24 2017
A289787
p-INVERT of the even positive integers (A005843), where p(S) = 1 - S - S^2.
Original entry on oeis.org
2, 12, 62, 312, 1570, 7908, 39838, 200688, 1010978, 5092860, 25655582, 129241512, 651061762, 3279762132, 16521995710, 83230530528, 419278719938, 2112141348588, 10640036959358, 53599815453720, 270012240337762, 1360202629711812, 6852101192007262
Offset: 0
-
z = 60; s = 2*x/(1 - x)^2; p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005843 *)
u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289787 *)
u/2 (* A289788 *)
Showing 1-10 of 81 results.
Comments