A024495
a(n) = C(n,2) + C(n,5) + ... + C(n, 3*floor(n/3)+2).
Original entry on oeis.org
0, 0, 1, 3, 6, 11, 21, 42, 85, 171, 342, 683, 1365, 2730, 5461, 10923, 21846, 43691, 87381, 174762, 349525, 699051, 1398102, 2796203, 5592405, 11184810, 22369621, 44739243, 89478486, 178956971, 357913941, 715827882, 1431655765, 2863311531, 5726623062
Offset: 0
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, 2nd. ed., Problem 38, p. 70.
- Seiichi Manyama, Table of n, a(n) for n = 0..3000
- Paul Barry, A note on Krawtchouk Polynomials and Riordan Arrays, JIS 11 (2008) 08.2.2, example 9.
- Antoine-Augustin Cournot, Solution d'un problème d'analyse combinatoire, Bulletin des Sciences Mathématiques, Physiques et Chimiques, item 34, volume 11, 1829, pages 93-97. Also at Google Books. Page 97 case p=3 formula y^(2) = a(n).
- Christian Ramus, Solution générale d'un problème d'analyse combinatoire, Journal für die Reine und Angewandte Mathematik (Crelle's journal), volume 11, 1834, pages 353-355. Page 353 case p=3 formula y^(2) = a(n).
- Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
- Eric Weisstein's World of Mathematics, Plane division by lines
- Index entries for linear recurrences with constant coefficients, signature (3,-3,2).
-
R:=PowerSeriesRing(Integers(), 30); [0,0] cat Coefficients(R!( x^2/((1-x)^3-x^3) )); // G. C. Greubel, Apr 11 2023
-
a:= proc(n) option remember; `if`(n=0, 0, 2*a(n-1)+
[-1, 0, 1, 1, 0, -1, -1][1+(n mod 6)])
end:
seq(a(n), n=0..33); # Paul Weisenhorn, May 17 2020
-
LinearRecurrence[{3,-3,2},{0,0,1},40] (* Harvey P. Dale, Sep 20 2016 *)
-
a(n) = sum(k=0,n\3,binomial(n,3*k+2)) /* Michael Somos, Feb 14 2006 */
-
a(n)=if(n<0, 0, ([1,0,1;1,1,0;0,1,1]^n)[3,1]) /* Michael Somos, Feb 14 2006 */
-
def A024495(n): return (2^n - chebyshev_U(n, 1/2) - chebyshev_U(n-1, 1/2))/3
[A024495(n) for n in range(41)] # G. C. Greubel, Apr 11 2023
A291000
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3.
Original entry on oeis.org
1, 3, 9, 26, 74, 210, 596, 1692, 4804, 13640, 38728, 109960, 312208, 886448, 2516880, 7146144, 20289952, 57608992, 163568448, 464417728, 1318615104, 3743926400, 10630080640, 30181847168, 85694918912, 243312448256, 690833811712, 1961475291648, 5569190816256
Offset: 0
-
z = 60; s = x/(1 - x); p = 1 - s - s^2 - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291000 *)
A000749
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3, with a(0)=a(1)=a(2)=0, a(3)=1.
Original entry on oeis.org
0, 0, 0, 1, 4, 10, 20, 36, 64, 120, 240, 496, 1024, 2080, 4160, 8256, 16384, 32640, 65280, 130816, 262144, 524800, 1049600, 2098176, 4194304, 8386560, 16773120, 33550336, 67108864, 134225920, 268451840, 536887296, 1073741824, 2147450880
Offset: 0
a(4;1,1)=4 since the four binary strings of trace 1, subtrace 1 and length 4 are { 0111, 1011, 1101, 1110 }.
- Higher Transcendental Functions, Bateman Manuscript Project, Vol. 3, ed. A. Erdelyi, 1983 (chapter XVIII).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
- Maran van Heesch, The multiplicative complexity of symmetric functions over a field with characteristic p, Thesis, 2014.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- F. Ruskey, Strings over Z_2 with given trace and subtrace
- F. Ruskey, Strings over GF(2) with given trace and subtrace
- Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4).
-
a000749 n = a000749_list !! n
a000749_list = 0 : 0 : 0 : 1 : zipWith3 (\u v w -> 4 * u - 6 * v + 4 * w)
(drop 3 a000749_list) (drop 2 a000749_list) (drop 1 a000749_list)
-- Reinhard Zumkeller, Jul 15 2013
-
I:=[0,0,0,1]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Dec 31 2015
-
A000749 := proc(n) local k; add(binomial(n,4*k+3),k=0..floor(n/4)); end;
A000749:=-1/((2*z-1)*(2*z**2-2*z+1)); # Simon Plouffe in his 1992 dissertation
a:= n-> if n=0 then 0 else (Matrix(3, (i,j)-> if (i=j-1) then 1 elif j=1 then [4,-6,4][i] else 0 fi)^(n-1))[1,3] fi: seq(a(n), n=0..33); # Alois P. Heinz, Aug 26 2008
# Alternatively:
s := sqrt(2): h := n -> [0,-s,-2,-s,0,s,2,s][1+(n mod 8)]:
a := n -> `if`(n=0,0,(2^n+2^(n/2)*h(n))/4):
seq(a(n),n=0..33); # Peter Luschny, Jun 14 2017
-
Join[{0},LinearRecurrence[{4,-6,4},{0,0,1},40]] (* Harvey P. Dale, Mar 31 2012 *)
CoefficientList[Series[x^3/(1 -4x +6x^2 -4x^3), {x,0,80}], x] (* Vincenzo Librandi, Dec 31 2015 *)
-
a(n)=sum(k=0,n\4,binomial(n,4*k+3))
-
@CachedFunction
def a(n): # a = A000749
if (n<4): return (n//3)
else: return 4*a(n-1) -6*a(n-2) +4*a(n-3)
[a(n) for n in range(41)] # G. C. Greubel, Apr 11 2023
Additional comments from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 22 2002
A049016
Expansion of 1/((1-x)^5 - x^5).
Original entry on oeis.org
1, 5, 15, 35, 70, 127, 220, 385, 715, 1430, 3004, 6385, 13380, 27370, 54740, 107883, 211585, 416405, 826045, 1652090, 3321891, 6690150, 13455325, 26985675, 53971350, 107746282, 214978335, 429124630, 857417220, 1714834440, 3431847189
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/((1-x)^5-x^5) )); // G. C. Greubel, Apr 11 2023
-
CoefficientList[Series[1/((1-x)^5-x^5),{x,0,30}],x] (* or *) LinearRecurrence[ {5,-10,10,-5,2},{1,5,15,35,70},40] (* Harvey P. Dale, Jan 20 2014 *)
-
def A049016_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x)^5-x^5) ).list()
A049016_list(30) # G. C. Greubel, Apr 11 2023
A049017
Expansion of 1/((1-x)^7 - x^7).
Original entry on oeis.org
1, 7, 28, 84, 210, 462, 924, 1717, 3017, 5110, 8568, 14756, 27132, 54264, 116281, 257775, 572264, 1246784, 2641366, 5430530, 10861060, 21242341, 40927033, 78354346, 150402700, 291693136, 574274008, 1148548016, 2326683921, 4749439975, 9714753412, 19818498700, 40199107690
Offset: 0
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)^7 - x^7) )); // G. C. Greubel, Apr 11 2023
-
CoefficientList[Series[1/((1-x)^7-x^7),{x,0,30}],x] (* Harvey P. Dale, Feb 18 2011 *)
-
Vec(1/((1-x)^7-x^7)+O(x^99)) \\ M. F. Hasler, Mar 05 2017
-
def A049017_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x)^7 - x^7) ).list()
A049017_list(40) # G. C. Greubel, Apr 11 2023
A192080
Expansion of 1/((1-x)^6 - x^6).
Original entry on oeis.org
1, 6, 21, 56, 126, 252, 463, 804, 1365, 2366, 4368, 8736, 18565, 40410, 87381, 184604, 379050, 758100, 1486675, 2884776, 5592405, 10919090, 21572460, 43144920, 87087001, 176565486, 357913941, 723002336, 1453179126, 2906358252
Offset: 0
-
m:=30; R:=PowerSeriesRing(Integers(),m); Coefficients(R!(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2))));
-
CoefficientList[Series[1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)), {x,0,50}], x] (* Vincenzo Librandi, Oct 15 2012 *)
LinearRecurrence[{6,-15,20,-15,6},{1,6,21,56,126},30] (* Harvey P. Dale, Feb 22 2017 *)
-
makelist(coeff(taylor(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)), x, 0, n), x, n), n, 0, 29);
-
Vec(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2))+O(x^99)) \\ Charles R Greathouse IV, Jun 23 2011
-
def A192080_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x)^6-x^6) ).list()
A192080_list(51) # G. C. Greubel, Apr 11 2023
A306915
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1-x)^k-x^k).
Original entry on oeis.org
1, 1, 2, 1, 2, 4, 1, 3, 4, 8, 1, 4, 6, 8, 16, 1, 5, 10, 11, 16, 32, 1, 6, 15, 20, 21, 32, 64, 1, 7, 21, 35, 36, 42, 64, 128, 1, 8, 28, 56, 70, 64, 85, 128, 256, 1, 9, 36, 84, 126, 127, 120, 171, 256, 512, 1, 10, 45, 120, 210, 252, 220, 240, 342, 512, 1024
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
2, 2, 3, 4, 5, 6, 7, 8, ...
4, 4, 6, 10, 15, 21, 28, 36, ...
8, 8, 11, 20, 35, 56, 84, 120, ...
16, 16, 21, 36, 70, 126, 210, 330, ...
32, 32, 42, 64, 127, 252, 462, 792, ...
64, 64, 85, 120, 220, 463, 924, 1716, ...
128, 128, 171, 240, 385, 804, 1717, 3432, ...
256, 256, 342, 496, 715, 1365, 3017, 6436, ...
-
A[n_, k_] := Sum[Binomial[n + k - 1, k*j + k - 1], {j, 0, Floor[n/k]}]; Table[A[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 25 2021 *)
A290993
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^6.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 6, 21, 56, 126, 252, 463, 804, 1365, 2366, 4368, 8736, 18565, 40410, 87381, 184604, 379050, 758100, 1486675, 2884776, 5592405, 10919090, 21572460, 43144920, 87087001, 176565486, 357913941, 723002336, 1453179126, 2906358252, 5791193143
Offset: 0
-
a:=[0,0,0,0,1];; for n in [6..35] do a[n]:=6*a[n-1]-15*a[n-2]+20*a[n-3]-15*a[n-4]+6*a[n-5]; od; Concatenation([0],a); # Muniru A Asiru, Oct 23 2018
-
R:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0] cat Coefficients(R!( x^5/((1-x)^6 - x^6) )); // G. C. Greubel, Apr 11 2023
-
seq(coeff(series(x^5/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 23 2018
-
z = 60; s = x/(1 - x); p = 1 - s^6;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290993 *)
-
concat(vector(5), Vec(x^5 / ((1 - 2*x)*(1 - x + x^2)*(1 - 3*x + 3*x^2)) + O(x^50))) \\ Colin Barker, Aug 24 2017
-
def A290993_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x^5/((1-x)^6 - x^6) ).list()
A290993_list(60) # G. C. Greubel, Apr 11 2023
A290994
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^7.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 7, 28, 84, 210, 462, 924, 1717, 3017, 5110, 8568, 14756, 27132, 54264, 116281, 257775, 572264, 1246784, 2641366, 5430530, 10861060, 21242341, 40927033, 78354346, 150402700, 291693136, 574274008, 1148548016, 2326683921, 4749439975
Offset: 0
-
R:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0,0] cat Coefficients(R!( x^6/((1-x)^7 - x^7) )); // G. C. Greubel, Apr 11 2023
-
z = 60; s = x/(1 - x); p = 1 - s^7;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290994 *)
-
concat(vector(6), Vec(x^6 / ((1 - 2*x)*(1 - 5*x + 11*x^2 - 13*x^3 + 9*x^4 - 3*x^5 + x^6)) + O(x^50))) \\ Colin Barker, Aug 22 2017
-
def A290994_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x^6/((1-x)^7 - x^7) ).list()
A290994_list(60) # G. C. Greubel, Apr 11 2023
Showing 1-9 of 9 results.
Comments