A306914
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1-x)^k+x^k).
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 3, 2, 0, 1, 4, 6, 0, 0, 1, 5, 10, 9, -4, 0, 1, 6, 15, 20, 9, -8, 0, 1, 7, 21, 35, 34, 0, -8, 0, 1, 8, 28, 56, 70, 48, -27, 0, 0, 1, 9, 36, 84, 126, 125, 48, -81, 16, 0, 1, 10, 45, 120, 210, 252, 200, 0, -162, 32, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 3, 4, 5, 6, 7, 8, ...
0, 2, 6, 10, 15, 21, 28, 36, ...
0, 0, 9, 20, 35, 56, 84, 120, ...
0, -4, 9, 34, 70, 126, 210, 330, ...
0, -8, 0, 48, 125, 252, 462, 792, ...
0, -8, -27, 48, 200, 461, 924, 1716, ...
0, 0, -81, 0, 275, 780, 1715, 3432, ...
0, 16, -162, -164, 275, 1209, 2989, 6434, ...
-
A[n_, k_] := SeriesCoefficient[1/((1-x)^k + x^k), {x, 0, n}];
Table[A[n-k+1, k], {n, 0, 11}, {k, n+1, 1, -1}] // Flatten (* Jean-François Alcover, Mar 20 2019 *)
A306939
Expansion of 1/((1 - x)^9 - x^9).
Original entry on oeis.org
1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24311, 43776, 75753, 127110, 209475, 346104, 591261, 1081575, 2163150, 4686826, 10656387, 24582663, 56191734, 125640180, 273241161, 577147212, 1184959314, 2369918628, 4631710931, 8881943832, 16798969548, 31537530456
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..3000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,2).
-
CoefficientList[Series[1/((1 - x)^9 - x^9), {x, 0, 30}], x] (* Amiram Eldar, May 25 2021 *)
-
{a(n) = sum(k=0, n\9, binomial(n+8, 9*k+8))}
-
N=66; x='x+O('x^N); Vec(1/((1-x)^9-x^9))
A307047
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1+x)^k-x^k).
Original entry on oeis.org
1, 1, 0, 1, -2, 0, 1, -3, 4, 0, 1, -4, 6, -8, 0, 1, -5, 10, -9, 16, 0, 1, -6, 15, -20, 9, -32, 0, 1, -7, 21, -35, 36, 0, 64, 0, 1, -8, 28, -56, 70, -64, -27, -128, 0, 1, -9, 36, -84, 126, -125, 120, 81, 256, 0, 1, -10, 45, -120, 210, -252, 200, -240, -162, -512, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, -2, -3, -4, -5, -6, -7, -8, ...
0, 4, 6, 10, 15, 21, 28, 36, ...
0, -8, -9, -20, -35, -56, -84, -120, ...
0, 16, 9, 36, 70, 126, 210, 330, ...
0, -32, 0, -64, -125, -252, -462, -792, ...
0, 64, -27, 120, 200, 463, 924, 1716, ...
0, -128, 81, -240, -275, -804, -1715, -3432, ...
0, 256, -162, 496, 275, 1365, 2989, 6436, ...
-
T[n_, k_] := (-1)^n * Sum[(-1)^(j * Mod[k, 2]) * Binomial[n + k - 1, k*j + k - 1], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
A306913
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1+x)^k+x^k).
Original entry on oeis.org
1, 1, -2, 1, -2, 4, 1, -3, 2, -8, 1, -4, 6, 0, 16, 1, -5, 10, -11, -4, -32, 1, -6, 15, -20, 21, 8, 64, 1, -7, 21, -35, 34, -42, -8, -128, 1, -8, 28, -56, 70, -48, 85, 0, 256, 1, -9, 36, -84, 126, -127, 48, -171, 16, -512, 1, -10, 45, -120, 210, -252, 220, 0, 342, -32, 1024
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
-2, -2, -3, -4, -5, -6, -7, -8, ...
4, 2, 6, 10, 15, 21, 28, 36, ...
-8, 0, -11, -20, -35, -56, -84, -120, ...
16, -4, 21, 34, 70, 126, 210, 330, ...
-32, 8, -42, -48, -127, -252, -462, -792, ...
64, -8, 85, 48, 220, 461, 924, 1716, ...
-128, 0, -171, 0, -385, -780, -1717, -3432, ...
256, 16, 342, -164, 715, 1209, 3017, 6434, ...
-
A[n_, k_] := (-1)^n * Sum[(-1)^(Mod[k+1, 2] * j) * Binomial[n + k - 1, k*j + k - 1], {j, 0, Floor[n/k]}]; Table[A[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 25 2021 *)
A307078
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-2))/((1-x)^k-x^k).
Original entry on oeis.org
1, 1, 3, 1, 2, 7, 1, 2, 4, 15, 1, 2, 3, 8, 31, 1, 2, 3, 5, 16, 63, 1, 2, 3, 4, 10, 32, 127, 1, 2, 3, 4, 6, 21, 64, 255, 1, 2, 3, 4, 5, 12, 43, 128, 511, 1, 2, 3, 4, 5, 7, 28, 86, 256, 1023, 1, 2, 3, 4, 5, 6, 14, 64, 171, 512, 2047, 1, 2, 3, 4, 5, 6, 8, 36, 136, 341, 1024, 4095
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
3, 2, 2, 2, 2, 2, 2, 2, 2, ...
7, 4, 3, 3, 3, 3, 3, 3, 3, ...
15, 8, 5, 4, 4, 4, 4, 4, 4, ...
31, 16, 10, 6, 5, 5, 5, 5, 5, ...
63, 32, 21, 12, 7, 6, 6, 6, 6, ...
127, 64, 43, 28, 14, 8, 7, 7, 7, ...
255, 128, 86, 64, 36, 16, 9, 8, 8, ...
511, 256, 171, 136, 93, 45, 18, 10, 9, ...
-
T[n_, k_] := Sum[Binomial[n+1, k*j+1], {j, 0, Floor[n/k]}]; Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
A307393
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-4))/((1-x)^k-x^k).
Original entry on oeis.org
1, 1, 5, 1, 4, 16, 1, 4, 11, 42, 1, 4, 10, 26, 99, 1, 4, 10, 21, 57, 219, 1, 4, 10, 20, 42, 120, 466, 1, 4, 10, 20, 36, 84, 247, 968, 1, 4, 10, 20, 35, 64, 169, 502, 1981, 1, 4, 10, 20, 35, 57, 120, 340, 1013, 4017, 1, 4, 10, 20, 35, 56, 93, 240, 682, 2036, 8100
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
5, 4, 4, 4, 4, 4, 4, 4, ...
16, 11, 10, 10, 10, 10, 10, 10, ...
42, 26, 21, 20, 20, 20, 20, 20, ...
99, 57, 42, 36, 35, 35, 35, 35, ...
219, 120, 84, 64, 57, 56, 56, 56, ...
466, 247, 169, 120, 93, 85, 84, 84, ...
968, 502, 340, 240, 165, 130, 121, 120, ...
-
T[n_, k_] := Sum[Binomial[n+3, k*j + 3], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
A307665
A(n,k) = Sum_{j=0..floor(n/k)} binomial(2*n,k*j+n), square array A(n,k) read by antidiagonals, for n >= 0, k >= 1.
Original entry on oeis.org
1, 1, 3, 1, 2, 11, 1, 2, 7, 42, 1, 2, 6, 26, 163, 1, 2, 6, 21, 99, 638, 1, 2, 6, 20, 78, 382, 2510, 1, 2, 6, 20, 71, 297, 1486, 9908, 1, 2, 6, 20, 70, 262, 1145, 5812, 39203, 1, 2, 6, 20, 70, 253, 990, 4447, 22819, 155382, 1, 2, 6, 20, 70, 252, 936, 3796, 17358, 89846, 616666
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
3, 2, 2, 2, 2, 2, 2, 2, ...
11, 7, 6, 6, 6, 6, 6, 6, ...
42, 26, 21, 20, 20, 20, 20, 20, ...
163, 99, 78, 71, 70, 70, 70, 70, ...
638, 382, 297, 262, 253, 252, 252, 252, ...
2510, 1486, 1145, 990, 936, 925, 924, 924, ...
9908, 5812, 4447, 3796, 3523, 3446, 3433, 3432, ...
-
T[n_, k_] := Sum[Binomial[2*n, k*j + n], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 13 2021*)
Showing 1-7 of 7 results.