A000748
Expansion of bracket function.
Original entry on oeis.org
1, -3, 6, -9, 9, 0, -27, 81, -162, 243, -243, 0, 729, -2187, 4374, -6561, 6561, 0, -19683, 59049, -118098, 177147, -177147, 0, 531441, -1594323, 3188646, -4782969, 4782969, 0, -14348907, 43046721, -86093442, 129140163, -129140163, 0, 387420489, -1162261467
Offset: 0
G.f. = 1 - 3*x + 6*x^2 - 9*x^3 + 9*x^4 - 27*x^6 + 81*x^7 - 162*x^8 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (-3,-3).
-
I:=[1,-3]; [n le 2 select I[n] else -3*Self(n-1)-3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 11 2016
-
A000748:=(-1-2*z-3*z**2-3*z**3+18*z**5)/(-1+z+9*z**5); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence apart from signs
a:= n-> (Matrix([[ -3,1], [ -3,0]])^n)[1,1]: seq(a(n), n=0..40); # Alois P. Heinz, Sep 06 2008
-
a[n_] := 2*3^(n/2)*Sin[(1-5*n)*Pi/6]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 12 2014 *)
LinearRecurrence[{-3, -3}, {1, -3}, 40] (* Jean-François Alcover, Feb 11 2016 *)
-
{a(n) = if( n<0, 0, polcoeff(1 / (1 + 3*x + 3*x^2) + x * O(x^n), n))}; /* Michael Somos, Jun 07 2005 */
-
{a(n) = if( n<0, 0, 3^((n+1)\2) * (-1)^(n\6) * ((-1)^n + (n%3==2)))}; /* Michael Somos, Sep 29 2007 */
A000750
Expansion of bracket function.
Original entry on oeis.org
1, -5, 15, -35, 70, -125, 200, -275, 275, 0, -1000, 3625, -9500, 21250, -42500, 76875, -124375, 171875, -171875, 0, 621875, -2250000, 5890625, -13171875, 26343750, -47656250, 77109375, -106562500, 106562500, 0
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..3000
- H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
- Index entries for linear recurrences with constant coefficients, signature (-5, -10, -10, -5).
-
LinearRecurrence[{-5, -10, -10, -5}, {1, -5, 15, -35}, 30] (* Jean-François Alcover, Feb 11 2016 *)
-
Vec(1/((1+x)^5-x^5) + O(x^40)) \\ Michel Marcus, Feb 11 2016
-
{a(n) = (-1)^n*sum(k=0, n\5, (-1)^k*binomial(n+4, 5*k+4))} \\ Seiichi Manyama, Mar 21 2019
A306915
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1-x)^k-x^k).
Original entry on oeis.org
1, 1, 2, 1, 2, 4, 1, 3, 4, 8, 1, 4, 6, 8, 16, 1, 5, 10, 11, 16, 32, 1, 6, 15, 20, 21, 32, 64, 1, 7, 21, 35, 36, 42, 64, 128, 1, 8, 28, 56, 70, 64, 85, 128, 256, 1, 9, 36, 84, 126, 127, 120, 171, 256, 512, 1, 10, 45, 120, 210, 252, 220, 240, 342, 512, 1024
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
2, 2, 3, 4, 5, 6, 7, 8, ...
4, 4, 6, 10, 15, 21, 28, 36, ...
8, 8, 11, 20, 35, 56, 84, 120, ...
16, 16, 21, 36, 70, 126, 210, 330, ...
32, 32, 42, 64, 127, 252, 462, 792, ...
64, 64, 85, 120, 220, 463, 924, 1716, ...
128, 128, 171, 240, 385, 804, 1717, 3432, ...
256, 256, 342, 496, 715, 1365, 3017, 6436, ...
-
A[n_, k_] := Sum[Binomial[n + k - 1, k*j + k - 1], {j, 0, Floor[n/k]}]; Table[A[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 25 2021 *)
A006090
Expansion of bracket function.
Original entry on oeis.org
1, -6, 21, -56, 126, -252, 463, -804, 1365, -2366, 4368, -8736, 18565, -40410, 87381, -184604, 379050, -758100, 1486675, -2884776, 5592405, -10919090, 21572460, -43144920, 87087001, -176565486, 357913941, -723002336
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2, issue 4, (1964), 241-260.
- Problems Drive, Eureka, 37 (1974), 8-11, 32-33, 24-27. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (-6,-15,-20,-15,-6).
-
CoefficientList[Series[1/((1+x)^6-x^6),{x,0,30}],x] (* or *) LinearRecurrence[ {-6,-15,-20,-15,-6},{1,-6,21,-56,126},31] (* Harvey P. Dale, Oct 14 2016 *)
-
x='x+O('x^50); Vec(1/((1+x)^6-x^6)) \\ G. C. Greubel, Jul 02 2017
A049018
Expansion of 1/((1+x)^7 - x^7).
Original entry on oeis.org
1, -7, 28, -84, 210, -462, 924, -1715, 2989, -4900, 7448, -9996, 9996, 0, -38759, 149205, -422576, 1041348, -2350922, 4970070, -9940140, 18874261, -33957343, 57374296, -89125120, 120875944, -120875944, 0, 459957169, -1749692735, 4904887652
Offset: 0
-
R:=PowerSeriesRing(Integers(), 35); Coefficients(R!( 1/((1+x)^7 - x^7) )); // G. C. Greubel, Mar 17 2019
-
LinearRecurrence[{-7,-21,-35,-35,-21,-7},{1,-7,28,-84,210,-462}, 35] (* Ray Chandler, Sep 23 2015 *)
-
Vec(1/((1+x)^7-x^7)+O(x^35)) \\ Charles R Greathouse IV, Sep 27 2012
-
{a(n) = (-1)^n*sum(k=0, n\7, (-1)^k*binomial(n+6, 7*k+6))} \\ Seiichi Manyama, Mar 21 2019
-
(1/((1+x)^7 - x^7)).series(x, 35).coefficients(x, sparse=False) # G. C. Greubel, Mar 17 2019
Showing 1-5 of 5 results.
Comments