cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000749 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3, with a(0)=a(1)=a(2)=0, a(3)=1.

Original entry on oeis.org

0, 0, 0, 1, 4, 10, 20, 36, 64, 120, 240, 496, 1024, 2080, 4160, 8256, 16384, 32640, 65280, 130816, 262144, 524800, 1049600, 2098176, 4194304, 8386560, 16773120, 33550336, 67108864, 134225920, 268451840, 536887296, 1073741824, 2147450880
Offset: 0

Views

Author

Keywords

Comments

Number of strings over Z_2 of length n with trace 1 and subtrace 1.
Same as number of strings over GF(2) of length n with trace 1 and subtrace 1.
Also expansion of bracket function.
a(n) is also the number of induced subgraphs with odd number of edges in the complete graph K(n-1). - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 02 2009
From Gary W. Adamson, Mar 13 2009: (Start)
M^n * [1,0,0,0] = [A038503(n), a(n), A038505(n), A038504(n)];
where M = the 4 X 4 matrix [1,1,0,0; 0,1,1,0; 0,0,1,1; 1,0,0,1].
Sum of the 4 terms = 2^n.
Example; M^6 * [1,0,0,0] = [16, 20, 16, 12] sum = 64 = 2^6. (End)
Binomial transform of the period 4 repeat: [0,0,0,1], which is the same as A011765 with offset 0. - Wesley Ivan Hurt, Dec 30 2015
{A038503, A038504, A038505, A000749} is the difference analog of the hyperbolic functions of order 4, {h_1(x), h_2(x), h_3(x), h_4(x)}. For a definition see the reference "Higher Transcendental Functions" and the Shevelev link. - Vladimir Shevelev, Jun 14 2017
This is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - S^4; see A291000. - Clark Kimberling, Aug 24 2017

Examples

			a(4;1,1)=4 since the four binary strings of trace 1, subtrace 1 and length 4 are { 0111, 1011, 1101, 1110 }.
		

References

  • Higher Transcendental Functions, Bateman Manuscript Project, Vol. 3, ed. A. Erdelyi, 1983 (chapter XVIII).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), this sequence (m=4), A049016 (m=5), A192080 (m=6), A049017 (m=7), A290995 (m=8), A306939 (m=9).

Programs

  • Haskell
    a000749 n = a000749_list !! n
    a000749_list = 0 : 0 : 0 : 1 : zipWith3 (\u v w -> 4 * u - 6 * v + 4 * w)
       (drop 3 a000749_list) (drop 2 a000749_list) (drop 1 a000749_list)
    -- Reinhard Zumkeller, Jul 15 2013
    
  • Magma
    I:=[0,0,0,1]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Dec 31 2015
    
  • Maple
    A000749 := proc(n) local k; add(binomial(n,4*k+3),k=0..floor(n/4)); end;
    A000749:=-1/((2*z-1)*(2*z**2-2*z+1)); # Simon Plouffe in his 1992 dissertation
    a:= n-> if n=0 then 0 else (Matrix(3, (i,j)-> if (i=j-1) then 1 elif j=1 then [4,-6,4][i] else 0 fi)^(n-1))[1,3] fi: seq(a(n), n=0..33); # Alois P. Heinz, Aug 26 2008
    # Alternatively:
    s := sqrt(2): h := n -> [0,-s,-2,-s,0,s,2,s][1+(n mod 8)]:
    a := n -> `if`(n=0,0,(2^n+2^(n/2)*h(n))/4):
    seq(a(n),n=0..33); # Peter Luschny, Jun 14 2017
  • Mathematica
    Join[{0},LinearRecurrence[{4,-6,4},{0,0,1},40]] (* Harvey P. Dale, Mar 31 2012 *)
    CoefficientList[Series[x^3/(1 -4x +6x^2 -4x^3), {x,0,80}], x] (* Vincenzo Librandi, Dec 31 2015 *)
  • PARI
    a(n)=sum(k=0,n\4,binomial(n,4*k+3))
    
  • SageMath
    @CachedFunction
    def a(n): # a = A000749
        if (n<4): return (n//3)
        else: return 4*a(n-1) -6*a(n-2) +4*a(n-3)
    [a(n) for n in range(41)] # G. C. Greubel, Apr 11 2023

Formula

G.f.: x^3/((1-x)^4 - x^4).
a(n) = Sum_{k=0..n} binomial(n, 4*k+3).
a(n) = a(n-1) + A038505(n-2) = 2*a(n-1) + A009545(n-2) for n>=2.
Without the two initial zeros, binomial transform of A007877. - Henry Bottomley, Jun 04 2001
From Paul Barry, Aug 30 2004: (Start)
a(n) = (2^n - 2^(n/2+1)*sin(Pi*n/4) - 0^n)/4.
a(n+1) is the binomial transform of A021913. (End)
a(n; t, s) = a(n-1; t, s) + a(n-1; t+1, s+t+1) where t is the trace and s is the subtrace.
Without the initial three zeros, = binomial transform of [1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 3, ...]. - Gary W. Adamson, Jun 19 2008
From Vladimir Shevelev, Jun 14 2017: (Start)
1) For n>=1, a(n) = (1/4)*(2^n + i*(1+i)^n - i*(1-i)^n), where i=sqrt(-1);
2) a(n+m) = a(n)*H_1(m) + H_3(n)*H_2(m) + H_2(n)*H_3(m) + H_1(n)*a(m),
where H_1 = A038503, H_2 = A038504, H_3 = A038505. (End)
a(n) = (2^n - 2*A009545(n) - [n=0])/4. - G. C. Greubel, Apr 11 2023

Extensions

Additional comments from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 22 2002
New definition from Paul Curtz, Oct 29 2007
Edited by N. J. A. Sloane, Jun 13 2008

A000750 Expansion of bracket function.

Original entry on oeis.org

1, -5, 15, -35, 70, -125, 200, -275, 275, 0, -1000, 3625, -9500, 21250, -42500, 76875, -124375, 171875, -171875, 0, 621875, -2250000, 5890625, -13171875, 26343750, -47656250, 77109375, -106562500, 106562500, 0
Offset: 0

Views

Author

Keywords

Comments

It appears that the (unsigned) sequence is identical to its 5th-order absolute difference. - John W. Layman, Sep 23 2003

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-5, -10, -10, -5}, {1, -5, 15, -35}, 30] (* Jean-François Alcover, Feb 11 2016 *)
  • PARI
    Vec(1/((1+x)^5-x^5) + O(x^40)) \\ Michel Marcus, Feb 11 2016
    
  • PARI
    {a(n) = (-1)^n*sum(k=0, n\5, (-1)^k*binomial(n+4, 5*k+4))} \\ Seiichi Manyama, Mar 21 2019

Formula

G.f.: 1/((1+x)^5-x^5).
a(n) = (-1)^n * Sum_{k=0..floor(n/5)} (-1)^k * binomial(n+4,5*k+4). - Seiichi Manyama, Mar 21 2019

A192080 Expansion of 1/((1-x)^6 - x^6).

Original entry on oeis.org

1, 6, 21, 56, 126, 252, 463, 804, 1365, 2366, 4368, 8736, 18565, 40410, 87381, 184604, 379050, 758100, 1486675, 2884776, 5592405, 10919090, 21572460, 43144920, 87087001, 176565486, 357913941, 723002336, 1453179126, 2906358252
Offset: 0

Views

Author

Bruno Berselli, Jun 23 2011

Keywords

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), A049016 (m=5), this sequence (m=6), A049017 (m=7), A290995 (m=8), A306939 (m=9).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(),m); Coefficients(R!(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2))));
    
  • Mathematica
    CoefficientList[Series[1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)), {x,0,50}], x] (* Vincenzo Librandi, Oct 15 2012 *)
    LinearRecurrence[{6,-15,20,-15,6},{1,6,21,56,126},30] (* Harvey P. Dale, Feb 22 2017 *)
  • Maxima
    makelist(coeff(taylor(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)), x, 0, n), x, n), n, 0, 29);
    
  • PARI
    Vec(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2))+O(x^99)) \\ Charles R Greathouse IV, Jun 23 2011
    
  • SageMath
    def A192080_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)^6-x^6) ).list()
    A192080_list(51) # G. C. Greubel, Apr 11 2023

Formula

a(n) = abs(A006090(n)) = (-1)^n * A006090(n).
G.f.: 1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)).
From G. C. Greubel, Apr 11 2023: (Start)
a(n) = (2^(n+5) + A010892(n) - 2*A010892(n-1) - 27*(A057083(n) - 2*A057083(n-1)))/6.
a(n) = (2^(n+5) + A057079(n+2) - 27*A057681(n+1))/6. (End)

A001659 Expansion of bracket function.

Original entry on oeis.org

1, 1, -1, 2, -5, 13, -33, 80, -184, 402, -840, 1699, -3382, 6750, -13716, 28550, -60587, 129579, -275915, 579828, -1197649, 2431775, -4870105, 9672634, -19173013, 38151533, -76521331, 154941608, -316399235, 649807589, -1337598675, 2751021907, -5640238583, 11513062785, -23389948481, 47310801199, -95345789479, 191616365385
Offset: 1

Views

Author

Keywords

Comments

Inverse binomial transform of A006218.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A038200(n-1) + A038200(n), n>1.

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k)*Binomial[n, k]*Sum[Floor[k/j], {j, 1, k}], {k, 0, n}], {n, 1, 50}] (* G. C. Greubel, Jul 02 2017 *)
  • PARI
    a(n)=sum(j=0,n,(-1)^(n-j)*binomial(n,j)*sum(k=1,j,j\k))
    
  • PARI
    a(n)=polcoeff(sum(k=1,n,x^k/((1+x)^k-x^k),x*O(x^n)),n)

Formula

a(n) = Sum_{j=0..n} ((-1)^(n-j)*binomial(n,j)*Sum_{k=1..j} floor(j/k)).
G.f.: Sum_{k>0} x^k/((1+x)^k-x^k).
G.f.: Sum_{k>0} tau(k)*x^k/(1+x)^k. - Vladeta Jovovic, Jun 24 2003
G.f.: Sum_{n>=1} z^n/(1-z^n) (Lambert series) where z=x/(1+x). - Joerg Arndt, Jan 30 2011
a(n) = Sum_{k=1..n} (-1)^(n-k)*binomial(n-1,k-1)*tau(k). - Ridouane Oudra, Aug 21 2021

Extensions

Edited by Michael Somos, Jun 14 2003

A307047 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1+x)^k-x^k).

Original entry on oeis.org

1, 1, 0, 1, -2, 0, 1, -3, 4, 0, 1, -4, 6, -8, 0, 1, -5, 10, -9, 16, 0, 1, -6, 15, -20, 9, -32, 0, 1, -7, 21, -35, 36, 0, 64, 0, 1, -8, 28, -56, 70, -64, -27, -128, 0, 1, -9, 36, -84, 126, -125, 120, 81, 256, 0, 1, -10, 45, -120, 210, -252, 200, -240, -162, -512, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2019

Keywords

Examples

			Square array begins:
   1,    1,    1,    1,    1,    1,     1,     1, ...
   0,   -2,   -3,   -4,   -5,   -6,    -7,    -8, ...
   0,    4,    6,   10,   15,   21,    28,    36, ...
   0,   -8,   -9,  -20,  -35,  -56,   -84,  -120, ...
   0,   16,    9,   36,   70,  126,   210,   330, ...
   0,  -32,    0,  -64, -125, -252,  -462,  -792, ...
   0,   64,  -27,  120,  200,  463,   924,  1716, ...
   0, -128,   81, -240, -275, -804, -1715, -3432, ...
   0,  256, -162,  496,  275, 1365,  2989,  6436, ...
		

Crossrefs

Columns 1-7 give A000007, A122803, A000748, (-1)^n * A000749(n+3), A000750, A006090, A049018.
Cf. A039912 (square array A(n,k), n >= 0, k >= 2), A306913, A306914, A306915.

Programs

  • Mathematica
    T[n_, k_] := (-1)^n * Sum[(-1)^(j * Mod[k, 2]) * Binomial[n + k - 1, k*j + k - 1], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)

Formula

A(n,k) = (-1)^n * Sum_{j=0..floor(n/k)} (-1)^((k mod 2) * j) * binomial(n+k-1,k*j+k-1).

A085476 Periodic Pascal array, read by upward antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 3, 1, 1, 1, 1, 5, 6, 1, 2, 1, 1, 1, 6, 10, 4, 1, 1, 1, 1, 1, 7, 15, 10, 1, 3, 1, 1, 1, 1, 8, 21, 20, 5, 1, 3, 2, 1, 1, 1, 9, 28, 35, 15, 1, 4, 1, 1, 1, 1, 1, 10, 36, 56, 35, 6, 1, 6, 1, 1, 1, 1
Offset: 0

Views

Author

Paul Barry, Jul 02 2003

Keywords

Comments

G.f. of binomial transform of n-th row is given by 1/((1-x)^(n+1)-x^(n+1)).

Examples

			Rows begin:
n\k | 0 1 2 3 4 5
----+------------
  0 | 1 1 1 1 1 1 ...
  1 | 1 1 1 1 1 1 ...
  2 | 1 2 1 1 2 1 ...
  3 | 1 3 3 1 1 3 ...
  4 | 1 4 6 4 1 1 ...
		

Crossrefs

Programs

Formula

Square array T(n, k) = C(n, k mod (n+1)).
Showing 1-6 of 6 results.