cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A024495 a(n) = C(n,2) + C(n,5) + ... + C(n, 3*floor(n/3)+2).

Original entry on oeis.org

0, 0, 1, 3, 6, 11, 21, 42, 85, 171, 342, 683, 1365, 2730, 5461, 10923, 21846, 43691, 87381, 174762, 349525, 699051, 1398102, 2796203, 5592405, 11184810, 22369621, 44739243, 89478486, 178956971, 357913941, 715827882, 1431655765, 2863311531, 5726623062
Offset: 0

Views

Author

Keywords

Comments

Trisections give A082365, A132804, A132805. - Paul Curtz, Nov 18 2007
If the offset is changed to 1, this is the maximal number of closed regions bounded by straight lines after n straight line cuts in a plane: a(n) = a(n-1) + n - 3, a(1)=0; a(2)=0; a(3)=1; and so on. - Srikanth K S, Jan 23 2008
M^n * [1,0,0] = [A024493(n), a(n), A024494(n)]; where M = a 3x3 matrix [1,1,0; 0,1,1; 1,0,1]. Sum of terms = 2^n. Example: M^5 * [1,0,0] = [11, 11, 10], sum = 2^5 = 32. - Gary W. Adamson, Mar 13 2009
For n>=1, a(n-1) is the number of generalized compositions of n when there are i^2/2 - 3*i/2 + 1 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010
Let M be any endomorphism on any vector space, such that M^3 = 1 (identity). Then (1+M)^n = A024493(n) + A024494(n)*M + a(n)*M^2. - Stanislav Sykora, Jun 10 2012
{A024493, A131708, A024495} is the difference analog of the hyperbolic functions {h_1(x), h_2(x), h_3(x)} of order 3. For the definitions of {h_i(x)} and the difference analog {H_i(n)} see [Erdelyi] and the Shevelev link respectively. - Vladimir Shevelev, Aug 01 2017
This is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - S^3; see A291000. - Clark Kimberling, Aug 24 2017

References

  • A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, 2nd. ed., Problem 38, p. 70.

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), this sequence (m=3), A000749 (m=4), A049016 (m=5), A192080 (m=6), A049017 (m=7), A290995 (m=8), A306939 (m=9).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0,0] cat Coefficients(R!( x^2/((1-x)^3-x^3) )); // G. C. Greubel, Apr 11 2023
    
  • Maple
    a:= proc(n) option remember; `if`(n=0, 0, 2*a(n-1)+
          [-1, 0, 1, 1, 0, -1, -1][1+(n mod 6)])
        end:
    seq(a(n), n=0..33); # Paul Weisenhorn, May 17 2020
  • Mathematica
    LinearRecurrence[{3,-3,2},{0,0,1},40] (* Harvey P. Dale, Sep 20 2016 *)
  • PARI
    a(n) = sum(k=0,n\3,binomial(n,3*k+2)) /* Michael Somos, Feb 14 2006 */
    
  • PARI
    a(n)=if(n<0, 0, ([1,0,1;1,1,0;0,1,1]^n)[3,1]) /* Michael Somos, Feb 14 2006 */
    
  • SageMath
    def A024495(n): return (2^n - chebyshev_U(n, 1/2) - chebyshev_U(n-1, 1/2))/3
    [A024495(n) for n in range(41)] # G. C. Greubel, Apr 11 2023

Formula

a(n) = ( 2^n + 2*cos((n-4)*Pi/3) )/3 = (2^n - A057079(n))/3.
a(n) = 2*a(n-1) + A010892(n-2) = a(n-1) + A024494(n-1). With initial zero, binomial transform of A011655 which is effectively A010892 unsigned. - Henry Bottomley, Jun 04 2001
a(2) = 1, a(3) = 3, a(n+2) = a(n+1) - a(n) + 2^n. - Benoit Cloitre, Sep 04 2002
a(n) = Sum_{k=0..n} 2^k*2*sin(Pi*(n-k)/3 + Pi/3)/sqrt(3) (offset 0). - Paul Barry, May 18 2004
G.f.: x^2/((1-x)^3 - x^3) = x^2 / ( (1-2*x)*(1-x+x^2) ).
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3). - Paul Curtz, Nov 18 2007
a(n) + A024493(n-1) = A131577(n). - Paul Curtz, Jan 24 2008
From Paul Curtz, May 29 2011: (Start)
a(n) + a(n+3) = 3*2^n = A007283(n).
a(n+6) - a(n) = 21*2^n = A175805(n).
a(n) + a(n+9) = 171*2^n.
a(n+12) - a(n) = 1365*2^n. (End)
a(n) = A113405(n) + A113405(n+1). - Paul Curtz, Jun 05 2011
Start with x(0)=1, y(0)=0, z(0)=0 and set x(n+1) = x(n) + z(n), y(n+1) = y(n) + x(n), z(n+1) = z(n) + y(n). Then a(n) = z(n). - Stanislav Sykora, Jun 10 2012
G.f.: -x^2/( x^3 - 1 + 3*x/Q(0) ) where Q(k) = 1 + k*(x+1) + 3*x - x*(k+1)*(k+4)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Mar 15 2013
a(n) = 1/18*(-4*(-1)^floor((n - 1)/3) - 6*(-1)^floor(n/3) - 3*(-1)^floor((n + 1)/3) + (-1)^(1 + floor((n + 2)/3)) + 3*2^(n + 1)). - John M. Campbell, Dec 23 2016
a(n) = (1/63)*(-40 + 21*2^n - 42*floor(n/6) + 32*floor((n+3)/6) + 16*floor((n+ 4)/6) - 24*floor((n+5)/6) - 22*floor((n+7)/6) + 21*floor((n+8)/6) + 10*floor((n+9)/6) + 5*floor((n+10)/6) + 3*floor((n+11)/6) + floor((n+ 13)/6)). - John M. Campbell, Dec 24 2016
a(n+m) = a(n)*A024493(m) + A131708(n)*A131708(m) + A024493(n)*a(m). - Vladimir Shevelev, Aug 01 2017
From Kevin Ryde, Sep 24 2020: (Start)
a(n) = (1/3)*2^n - (1/3)*cos((1/3)*Pi*n) - (1/sqrt(3))*sin((1/3)*Pi*n). [Cournot]
a(n) + A111927(n) + A131708(n) = 2^n - 1. [Cournot, page 96 last formula, but misprint should be 2^x - 1 rather than 2^p - 1] (End)
E.g.f.: (exp(2*x) - exp(x/2)*(cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)))/3. - Stefano Spezia, Feb 06 2025

A000749 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3, with a(0)=a(1)=a(2)=0, a(3)=1.

Original entry on oeis.org

0, 0, 0, 1, 4, 10, 20, 36, 64, 120, 240, 496, 1024, 2080, 4160, 8256, 16384, 32640, 65280, 130816, 262144, 524800, 1049600, 2098176, 4194304, 8386560, 16773120, 33550336, 67108864, 134225920, 268451840, 536887296, 1073741824, 2147450880
Offset: 0

Views

Author

Keywords

Comments

Number of strings over Z_2 of length n with trace 1 and subtrace 1.
Same as number of strings over GF(2) of length n with trace 1 and subtrace 1.
Also expansion of bracket function.
a(n) is also the number of induced subgraphs with odd number of edges in the complete graph K(n-1). - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 02 2009
From Gary W. Adamson, Mar 13 2009: (Start)
M^n * [1,0,0,0] = [A038503(n), a(n), A038505(n), A038504(n)];
where M = the 4 X 4 matrix [1,1,0,0; 0,1,1,0; 0,0,1,1; 1,0,0,1].
Sum of the 4 terms = 2^n.
Example; M^6 * [1,0,0,0] = [16, 20, 16, 12] sum = 64 = 2^6. (End)
Binomial transform of the period 4 repeat: [0,0,0,1], which is the same as A011765 with offset 0. - Wesley Ivan Hurt, Dec 30 2015
{A038503, A038504, A038505, A000749} is the difference analog of the hyperbolic functions of order 4, {h_1(x), h_2(x), h_3(x), h_4(x)}. For a definition see the reference "Higher Transcendental Functions" and the Shevelev link. - Vladimir Shevelev, Jun 14 2017
This is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - S^4; see A291000. - Clark Kimberling, Aug 24 2017

Examples

			a(4;1,1)=4 since the four binary strings of trace 1, subtrace 1 and length 4 are { 0111, 1011, 1101, 1110 }.
		

References

  • Higher Transcendental Functions, Bateman Manuscript Project, Vol. 3, ed. A. Erdelyi, 1983 (chapter XVIII).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), this sequence (m=4), A049016 (m=5), A192080 (m=6), A049017 (m=7), A290995 (m=8), A306939 (m=9).

Programs

  • Haskell
    a000749 n = a000749_list !! n
    a000749_list = 0 : 0 : 0 : 1 : zipWith3 (\u v w -> 4 * u - 6 * v + 4 * w)
       (drop 3 a000749_list) (drop 2 a000749_list) (drop 1 a000749_list)
    -- Reinhard Zumkeller, Jul 15 2013
    
  • Magma
    I:=[0,0,0,1]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Dec 31 2015
    
  • Maple
    A000749 := proc(n) local k; add(binomial(n,4*k+3),k=0..floor(n/4)); end;
    A000749:=-1/((2*z-1)*(2*z**2-2*z+1)); # Simon Plouffe in his 1992 dissertation
    a:= n-> if n=0 then 0 else (Matrix(3, (i,j)-> if (i=j-1) then 1 elif j=1 then [4,-6,4][i] else 0 fi)^(n-1))[1,3] fi: seq(a(n), n=0..33); # Alois P. Heinz, Aug 26 2008
    # Alternatively:
    s := sqrt(2): h := n -> [0,-s,-2,-s,0,s,2,s][1+(n mod 8)]:
    a := n -> `if`(n=0,0,(2^n+2^(n/2)*h(n))/4):
    seq(a(n),n=0..33); # Peter Luschny, Jun 14 2017
  • Mathematica
    Join[{0},LinearRecurrence[{4,-6,4},{0,0,1},40]] (* Harvey P. Dale, Mar 31 2012 *)
    CoefficientList[Series[x^3/(1 -4x +6x^2 -4x^3), {x,0,80}], x] (* Vincenzo Librandi, Dec 31 2015 *)
  • PARI
    a(n)=sum(k=0,n\4,binomial(n,4*k+3))
    
  • SageMath
    @CachedFunction
    def a(n): # a = A000749
        if (n<4): return (n//3)
        else: return 4*a(n-1) -6*a(n-2) +4*a(n-3)
    [a(n) for n in range(41)] # G. C. Greubel, Apr 11 2023

Formula

G.f.: x^3/((1-x)^4 - x^4).
a(n) = Sum_{k=0..n} binomial(n, 4*k+3).
a(n) = a(n-1) + A038505(n-2) = 2*a(n-1) + A009545(n-2) for n>=2.
Without the two initial zeros, binomial transform of A007877. - Henry Bottomley, Jun 04 2001
From Paul Barry, Aug 30 2004: (Start)
a(n) = (2^n - 2^(n/2+1)*sin(Pi*n/4) - 0^n)/4.
a(n+1) is the binomial transform of A021913. (End)
a(n; t, s) = a(n-1; t, s) + a(n-1; t+1, s+t+1) where t is the trace and s is the subtrace.
Without the initial three zeros, = binomial transform of [1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 3, ...]. - Gary W. Adamson, Jun 19 2008
From Vladimir Shevelev, Jun 14 2017: (Start)
1) For n>=1, a(n) = (1/4)*(2^n + i*(1+i)^n - i*(1-i)^n), where i=sqrt(-1);
2) a(n+m) = a(n)*H_1(m) + H_3(n)*H_2(m) + H_2(n)*H_3(m) + H_1(n)*a(m),
where H_1 = A038503, H_2 = A038504, H_3 = A038505. (End)
a(n) = (2^n - 2*A009545(n) - [n=0])/4. - G. C. Greubel, Apr 11 2023

Extensions

Additional comments from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 22 2002
New definition from Paul Curtz, Oct 29 2007
Edited by N. J. A. Sloane, Jun 13 2008

A049016 Expansion of 1/((1-x)^5 - x^5).

Original entry on oeis.org

1, 5, 15, 35, 70, 127, 220, 385, 715, 1430, 3004, 6385, 13380, 27370, 54740, 107883, 211585, 416405, 826045, 1652090, 3321891, 6690150, 13455325, 26985675, 53971350, 107746282, 214978335, 429124630, 857417220, 1714834440, 3431847189
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), this sequence (m=5), A192080 (m=6), A049017 (m=7), A290995 (m=8), A306939 (m=9).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/((1-x)^5-x^5) )); // G. C. Greubel, Apr 11 2023
    
  • Mathematica
    CoefficientList[Series[1/((1-x)^5-x^5),{x,0,30}],x] (* or *) LinearRecurrence[ {5,-10,10,-5,2},{1,5,15,35,70},40] (* Harvey P. Dale, Jan 20 2014 *)
  • SageMath
    def A049016_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)^5-x^5) ).list()
    A049016_list(30) # G. C. Greubel, Apr 11 2023

Formula

G.f.: 1/((1-x)^5-x^5) = 1/( (1-2*x)*(1-3*x+4*x^2-2*x^3+x^4) ).
a(10*n+3) = A078789(5*n+3).
a(10*n+5) = A078789(5*n+4).
a(n) = (-1)^n * A000750(n).
Binomial transform of expansion of (1+x)^4/(1-x^5), or (1, 4, 6, 4, 1, 1, 4, 6, 4, 1, ...). - Paul Barry, Mar 19 2004
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 2*a(n-5). - Paul Curtz, May 24 2008
G.f.: -1/( x^5 - 1 + 5*x/Q(0) ) where Q(k) = 1 + k*(x+1) + 5*x - x*(k+1)*(k+6)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 15 2013

A049017 Expansion of 1/((1-x)^7 - x^7).

Original entry on oeis.org

1, 7, 28, 84, 210, 462, 924, 1717, 3017, 5110, 8568, 14756, 27132, 54264, 116281, 257775, 572264, 1246784, 2641366, 5430530, 10861060, 21242341, 40927033, 78354346, 150402700, 291693136, 574274008, 1148548016, 2326683921, 4749439975, 9714753412, 19818498700, 40199107690
Offset: 0

Views

Author

Keywords

Comments

Differs for n >= 7 (1717 vs. 1716) from A000579(n+6) = binomial(n+6,6); see also row 6 of A027555, A059481 and A213808. - M. F. Hasler, Mar 05 2017

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), A049016 (m=5), A192080 (m=6), this sequence (m=7), A290995 (m=8), A306939 (m=9).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)^7 - x^7) )); // G. C. Greubel, Apr 11 2023
    
  • Mathematica
    CoefficientList[Series[1/((1-x)^7-x^7),{x,0,30}],x]  (* Harvey P. Dale, Feb 18 2011 *)
  • PARI
    Vec(1/((1-x)^7-x^7)+O(x^99)) \\ M. F. Hasler, Mar 05 2017
    
  • SageMath
    def A049017_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)^7 - x^7) ).list()
    A049017_list(40) # G. C. Greubel, Apr 11 2023

Formula

G.f.: 1/((1-x)^7 - x^7) = 1/((1-2*x)*(1-5*x+11*x^2-13*x^3+9*x^4-3*x^5+x^6)).

A290995 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 8, 36, 120, 330, 792, 1716, 3432, 6436, 11456, 19584, 32640, 54264, 93024, 170544, 341088, 735472, 1653632, 3749760, 8386560, 18289440, 38724480, 79594560, 159189120, 311058496, 597137408, 1133991936, 2147450880, 4089171840
Offset: 0

Views

Author

Clark Kimberling, Aug 22 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), A049016 (m=5), A192080 (m=6), A049017 (m=7), this sequence (m=8), A306939 (m=9).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0,0,0] cat Coefficients(R!( x^7/((1-x)^8 - x^8) )); // G. C. Greubel, Apr 11 2023
    
  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - s^8;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A290995 *)
  • PARI
    concat(vector(7), Vec(x^7 / ((1 - 2*x)*(1 - 2*x + 2*x^2)*(1 - 4*x + 6*x^2 - 4*x^3 + 2*x^4)) + O(x^50))) \\ Colin Barker, Aug 22 2017
    
  • SageMath
    def A290995_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^7/((1-x)^8 - x^8) ).list()
    A290995_list(60) # G. C. Greubel, Apr 11 2023

Formula

a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) for n >= 9.
G.f.: x^7 / ((1 - 2*x)*(1 - 2*x + 2*x^2)*(1 - 4*x + 6*x^2 - 4*x^3 + 2*x^4)). - Colin Barker, Aug 22 2017
G.f.: x^7/((1-x)^8 - x^8). - G. C. Greubel, Apr 11 2023

A306915 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1-x)^k-x^k).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 3, 4, 8, 1, 4, 6, 8, 16, 1, 5, 10, 11, 16, 32, 1, 6, 15, 20, 21, 32, 64, 1, 7, 21, 35, 36, 42, 64, 128, 1, 8, 28, 56, 70, 64, 85, 128, 256, 1, 9, 36, 84, 126, 127, 120, 171, 256, 512, 1, 10, 45, 120, 210, 252, 220, 240, 342, 512, 1024
Offset: 0

Views

Author

Seiichi Manyama, Mar 16 2019

Keywords

Examples

			Square array begins:
     1,   1,   1,   1,   1,    1,    1,    1, ...
     2,   2,   3,   4,   5,    6,    7,    8, ...
     4,   4,   6,  10,  15,   21,   28,   36, ...
     8,   8,  11,  20,  35,   56,   84,  120, ...
    16,  16,  21,  36,  70,  126,  210,  330, ...
    32,  32,  42,  64, 127,  252,  462,  792, ...
    64,  64,  85, 120, 220,  463,  924, 1716, ...
   128, 128, 171, 240, 385,  804, 1717, 3432, ...
   256, 256, 342, 496, 715, 1365, 3017, 6436, ...
		

Crossrefs

Programs

  • Mathematica
    A[n_, k_] := Sum[Binomial[n + k - 1, k*j + k - 1], {j, 0, Floor[n/k]}]; Table[A[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 25 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(n+k-1,k*j+k-1).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} binomial(i+k-1,k*j+k-1) * binomial(n-i+k-1,k*j+k-1). - Seiichi Manyama, Apr 07 2019

A290993 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^6.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 6, 21, 56, 126, 252, 463, 804, 1365, 2366, 4368, 8736, 18565, 40410, 87381, 184604, 379050, 758100, 1486675, 2884776, 5592405, 10919090, 21572460, 43144920, 87087001, 176565486, 357913941, 723002336, 1453179126, 2906358252, 5791193143
Offset: 0

Views

Author

Clark Kimberling, Aug 21 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Sequences of the form x^(m-1)/((1-x)^m - x^m): A000079 (m=1), A131577 (m=2), A024495 (m=3), A000749 (m=4), A139761 (m=5), this sequence (m=6), A290994 (m=7), A290995 (m=8).

Programs

  • GAP
    a:=[0,0,0,0,1];;  for n in [6..35] do a[n]:=6*a[n-1]-15*a[n-2]+20*a[n-3]-15*a[n-4]+6*a[n-5]; od; Concatenation([0],a); # Muniru A Asiru, Oct 23 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0] cat Coefficients(R!( x^5/((1-x)^6 - x^6) )); // G. C. Greubel, Apr 11 2023
    
  • Maple
    seq(coeff(series(x^5/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - s^6;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A290993 *)
  • PARI
    concat(vector(5), Vec(x^5 / ((1 - 2*x)*(1 - x + x^2)*(1 - 3*x + 3*x^2)) + O(x^50))) \\ Colin Barker, Aug 24 2017
    
  • SageMath
    def A290993_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^5/((1-x)^6 - x^6) ).list()
    A290993_list(60) # G. C. Greubel, Apr 11 2023

Formula

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) for n>5. Corrected by Colin Barker, Aug 24 2017
G.f.: x^5 / ((1 - 2*x)*(1 - x + x^2)*(1 - 3*x + 3*x^2)). - Colin Barker, Aug 24 2017
a(n) = A192080(n-5) for n > 5. - Georg Fischer, Oct 23 2018
G.f.: x^5/((1-x)^6 - x^6). - G. C. Greubel, Apr 11 2023

A227430 Expansion of x^2*(1-x)^3/((1-2*x)*(1-x+x^2)*(1-3*x+3x^2)).

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 21, 29, 45, 90, 220, 561, 1365, 3095, 6555, 13110, 25126, 46971, 87381, 164921, 320001, 640002, 1309528, 2707629, 5592405, 11450531, 23166783, 46333566, 91869970, 181348455, 357913941, 708653429, 1410132405, 2820264810, 5662052980
Offset: 0

Views

Author

Paul Curtz, Jul 11 2013

Keywords

Comments

Consider the binomial transform of 0, 0, 0, 0, 0, 1 (period 6) with its differences:
0, 0, 0, 0, 0, 1, 6, 21, 56, 126,... d(n): after 0, it is A192080.
0, 0, 0, 0, 1, 5, 15, 35, 70, 126,... e(n)
0, 0, 0, 1, 4, 10, 20, 35, 56, 85,... f(n)
0, 0, 1, 3, 6, 10, 15, 21, 29, 45,... a(n)
0, 1, 2, 3, 4, 5, 6, 8, 16, 45,... b(n)
1, 1, 1, 1, 1, 1, 2, 8, 29, 85,... c(n)
0, 0, 0, 0, 0, 1, 6, 21, 56, 126,... d(n).
a(n) + d(n) = A024495(n),
b(n) + e(n) = A131708(n),
c(n) + f(n) = A024493(n).
a(n) - d(n) = 0, 0, 1, 3, 6, 9, 9, 0,... A057083(n-2)
b(n) - e(n) = 0, 1, 2, 3, 3, 0, -9, -27,... A057682(n)
c(n) - f(n) = 1, 1, 1, 0, -3, -9, -18, -27,... A057681(n)
d(n) - a(n) = 0, 0, -1, -3, -6, -9, -9, 0,... -A057083(n-2)
e(n) - b(n) = 0, -1, -2, -3, -3, 0, 9, 27,... -A057682(n)
f(n) - c(n) = -1, -1, -1, 0, 3, 9, 18, 27,... -A057681(n).
The first column is A131531(n).
The first two trisections are multiples of 3. Is the third (1, 10, 29,...) mod 9 A029898(n)?

Examples

			a(6)=6*10-15*6+20*3-15*1+6*0=15, a(7)=90-150+120-45+6=21.
		

Programs

  • Mathematica
    Join[{0},LinearRecurrence[{6,-15,20,-15,6},{0,1,3,6,10},40]] (* Harvey P. Dale, Dec 17 2014 *)
  • PARI
    {a(n) = sum(k=0, n\6, binomial(n, 6*k+2))} \\ Seiichi Manyama, Mar 23 2019

Formula

a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) for n>5, a(0)=a(1)=0, a(2)=1, a(3)=3, a(4)=6, a(5)=10.
a(n) = A024495(n) - A192080(n-5) for n>4.
G.f.: -(x^5 - 3*x^4 + 3*x^3 - x^2)/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)). - Ralf Stephan, Jul 13 2013
a(n) = Sum_{k=0..floor(n/6)} binomial(n,6*k+2). - Seiichi Manyama, Mar 23 2019

Extensions

Definition uses the g.f. of Ralf Stephan.
More terms from Harvey P. Dale, Dec 17 2014
Showing 1-8 of 8 results.