A002264
Nonnegative integers repeated 3 times.
Original entry on oeis.org
0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Václav Chvátal, A combinatorial theorem in plane geometry, Journal of Combinatorial Theory, Series B 18 (1975), pp. 39-41, doi:10.1016/0095-8956(75)90061-1.
- Clark Kimberling, A Combinatorial Classification of Triangle Centers on the Line at Infinity, J. Int. Seq., Vol. 22 (2019), Article 19.5.4.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Cf.
A001477,
A002265,
A002266,
A004526,
A008615,
A008620,
A010761,
A010762,
A010872,
A010873,
A010874,
A022003,
A110532,
A110533,
A137221 (binomial transform).
Apart from the zeros, this is column 3 of
A235791.
-
a002264 n = a002264_list !! n
a002264_list = 0 : 0 : 0 : map (+ 1) a002264_list
-- Reinhard Zumkeller, Nov 06 2012, Apr 16 2012
-
[Floor(n/3): n in [0..100]]; // Vincenzo Librandi, Apr 29 2015
-
&cat [[n,n,n]: n in [0..30]]; // Bruno Berselli, Apr 29 2015
-
seq(i$3,i=0..100); # Robert Israel, Aug 04 2014
-
Flatten[Table[{n, n, n}, {n, 0, 25}]] (* Harvey P. Dale, Jun 09 2013 *)
Floor[Range[0, 20]/3] (* Eric W. Weisstein, Aug 12 2023 *)
Table[Floor[n/3], {n, 0, 20}] (* Eric W. Weisstein, Aug 12 2023 *)
Table[(n - Cos[2 (n - 2) Pi/3] + Sin[2 (n - 2) Pi/3]/Sqrt[3] - 1)/3, {n, 0, 20}] (* Eric W. Weisstein, Aug 12 2023 *)
Table[(n - ChebyshevU[n - 2, -1/2] - 1)/3, {n, 0, 20}] (* Eric W. Weisstein, Aug 12 2023 *)
LinearRecurrence[{1, 0, 1, -1}, {0, 0, 0, 1}, 20] (* Eric W. Weisstein, Aug 12 2023 *)
CoefficientList[Series[x^3/((-1 + x)^2 (1 + x + x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 12 2023 *)
-
a(n)=n\3 /* Jaume Oliver Lafont, Mar 25 2009 */
-
v=[0,0];for(n=2,50,v=concat(v,n-2-v[#v]-v[#v-1]));v \\ Derek Orr, Apr 28 2015
-
[floor(n/3) for n in range(0,79)] # Zerinvary Lajos, Dec 01 2009
A057083
Scaled Chebyshev U-polynomials evaluated at sqrt(3)/2; expansion of 1/(1 - 3*x + 3*x^2).
Original entry on oeis.org
1, 3, 6, 9, 9, 0, -27, -81, -162, -243, -243, 0, 729, 2187, 4374, 6561, 6561, 0, -19683, -59049, -118098, -177147, -177147, 0, 531441, 1594323, 3188646, 4782969, 4782969, 0, -14348907, -43046721, -86093442, -129140163, -129140163, 0
Offset: 0
- Robert Israel, Table of n, a(n) for n = 0..4170
- T. Alden Gassert, Discriminants of simplest 3^n-tic extensions, arXiv preprint arXiv:1409.7829 [math.NT], 2014.
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=3, q=-3.
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs. (38) and (45),lhs, m=3.
- Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (3,-3).
-
I:=[1,3]; [n le 2 select I[n] else 3*Self(n-1) - 3*Self(n-2): n in [1..30]]; // G. C. Greubel, Oct 23 2018
-
seq(3^(n/2)*orthopoly[U](n,sqrt(3)/2),n=0..100); # Robert Israel, Nov 21 2016
-
Join[{a=1,b=3},Table[c=3*b-3*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)
CoefficientList[Series[1/(1 - 3 x + 3 x^2), {x, 0, 35}], x] (* Michael De Vlieger, Jul 30 2017 *)
-
a(n)=([0,1; -3,3]^n*[1;3])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
[lucas_number1(n,3,3) for n in range(1, 37)] # Zerinvary Lajos, Apr 23 2009
A000749
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3, with a(0)=a(1)=a(2)=0, a(3)=1.
Original entry on oeis.org
0, 0, 0, 1, 4, 10, 20, 36, 64, 120, 240, 496, 1024, 2080, 4160, 8256, 16384, 32640, 65280, 130816, 262144, 524800, 1049600, 2098176, 4194304, 8386560, 16773120, 33550336, 67108864, 134225920, 268451840, 536887296, 1073741824, 2147450880
Offset: 0
a(4;1,1)=4 since the four binary strings of trace 1, subtrace 1 and length 4 are { 0111, 1011, 1101, 1110 }.
- Higher Transcendental Functions, Bateman Manuscript Project, Vol. 3, ed. A. Erdelyi, 1983 (chapter XVIII).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
- Maran van Heesch, The multiplicative complexity of symmetric functions over a field with characteristic p, Thesis, 2014.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- F. Ruskey, Strings over Z_2 with given trace and subtrace
- F. Ruskey, Strings over GF(2) with given trace and subtrace
- Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4).
-
a000749 n = a000749_list !! n
a000749_list = 0 : 0 : 0 : 1 : zipWith3 (\u v w -> 4 * u - 6 * v + 4 * w)
(drop 3 a000749_list) (drop 2 a000749_list) (drop 1 a000749_list)
-- Reinhard Zumkeller, Jul 15 2013
-
I:=[0,0,0,1]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Dec 31 2015
-
A000749 := proc(n) local k; add(binomial(n,4*k+3),k=0..floor(n/4)); end;
A000749:=-1/((2*z-1)*(2*z**2-2*z+1)); # Simon Plouffe in his 1992 dissertation
a:= n-> if n=0 then 0 else (Matrix(3, (i,j)-> if (i=j-1) then 1 elif j=1 then [4,-6,4][i] else 0 fi)^(n-1))[1,3] fi: seq(a(n), n=0..33); # Alois P. Heinz, Aug 26 2008
# Alternatively:
s := sqrt(2): h := n -> [0,-s,-2,-s,0,s,2,s][1+(n mod 8)]:
a := n -> `if`(n=0,0,(2^n+2^(n/2)*h(n))/4):
seq(a(n),n=0..33); # Peter Luschny, Jun 14 2017
-
Join[{0},LinearRecurrence[{4,-6,4},{0,0,1},40]] (* Harvey P. Dale, Mar 31 2012 *)
CoefficientList[Series[x^3/(1 -4x +6x^2 -4x^3), {x,0,80}], x] (* Vincenzo Librandi, Dec 31 2015 *)
-
a(n)=sum(k=0,n\4,binomial(n,4*k+3))
-
@CachedFunction
def a(n): # a = A000749
if (n<4): return (n//3)
else: return 4*a(n-1) -6*a(n-2) +4*a(n-3)
[a(n) for n in range(41)] # G. C. Greubel, Apr 11 2023
Additional comments from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 22 2002
A063967
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-2,k) + T(n-1,k-1) + T(n-2,k-1) and T(0,0) = 1.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 3, 7, 5, 1, 5, 15, 16, 7, 1, 8, 30, 43, 29, 9, 1, 13, 58, 104, 95, 46, 11, 1, 21, 109, 235, 271, 179, 67, 13, 1, 34, 201, 506, 705, 591, 303, 92, 15, 1, 55, 365, 1051, 1717, 1746, 1140, 475, 121, 17, 1, 89, 655, 2123, 3979, 4759, 3780, 2010, 703, 154, 19, 1
Offset: 0
T(3,1) = T(2,1) + T(1,1) + T(2,0) + T(1,0) = 3 + 1 + 2 + 1 = 7.
Triangle begins:
1,
1, 1,
2, 3, 1,
3, 7, 5, 1,
5, 15, 16, 7, 1,
8, 30, 43, 29, 9, 1,
13, 58, 104, 95, 46, 11, 1,
21, 109, 235, 271, 179, 67, 13, 1,
34, 201, 506, 705, 591, 303, 92, 15, 1
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
- E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Mathematics, 34 (2005) pp. 101-122.
- Emanuele Munarini, A generalization of André-Jeannin's symmetric identity, Pure Mathematics and Applications (2018) Vol. 27, No. 1, 98-118.
Sum_{k=0..n} x^k*T(n,k) is (-1)^n*
A057086(n) (x=-11), (-1)^n*
A057085(n+1) (x=-10), (-1)^n*
A057084(n) (x=-9), (-1)^n*
A030240(n) (x=-8), (-1)^n*
A030192(n) (x=-7), (-1)^n*
A030191(n) (x=-6), (-1)^n*
A001787(n+1) (x=-5),
A000748(n) (x=-4),
A108520(n) (x=-3),
A049347(n) (x=-2),
A000007(n) (x=-1),
A000045(n) (x=0),
A002605(n) (x=1),
A030195(n+1) (x=2),
A057087(n) (x=3),
A057088(n) (x=4),
A057089(n) (x=5),
A057090(n) (x=6),
A057091(n) (x=7),
A057092(n) (x=8),
A057093(n) (x=9). -
Philippe Deléham, Nov 03 2006
-
a063967_tabl = [1] : [1,1] : f [1] [1,1] where
f us vs = ws : f vs ws where
ws = zipWith (+) ([0] ++ us ++ [0]) $
zipWith (+) (us ++ [0,0]) $ zipWith (+) ([0] ++ vs) (vs ++ [0])
-- Reinhard Zumkeller, Apr 17 2013
-
T[n_, k_] := Sum[Binomial[j, n - j]*Binomial[j, k], {j, 0, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 11 2017, after Paul Barry *)
(* Function RiordanSquare defined in A321620. *)
RiordanSquare[1/(1 - x - x^2), 11] // Flatten (* Peter Luschny, Nov 27 2018 *)
A057682
a(n) = Sum_{j=0..floor(n/3)} (-1)^j*binomial(n,3*j+1).
Original entry on oeis.org
0, 1, 2, 3, 3, 0, -9, -27, -54, -81, -81, 0, 243, 729, 1458, 2187, 2187, 0, -6561, -19683, -39366, -59049, -59049, 0, 177147, 531441, 1062882, 1594323, 1594323, 0, -4782969, -14348907, -28697814, -43046721, -43046721, 0, 129140163, 387420489, 774840978
Offset: 0
G.f. = x + 2*x^2 + 3*x^3 + 3*x^4 - 9*x^6 - 27*x^7 - 54*x^8 - 81*x^9 + ...
If M^3=1 then (1-M)^6 = A057681(6) - a(6)*M + A057083(4)*M^2 = -18 + 9*M + 9*M^2. - _Stanislav Sykora_, Jun 10 2012
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Mark W. Coffey, Reductions of particular hypergeometric functions 3F2 (a, a+1/3, a+2/3; p/3, q/3; +-1), arXiv preprint arXiv:1506.09160 [math.CA], 2015.
- Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
- Index entries for linear recurrences with constant coefficients, signature (3,-3).
Alternating row sums of triangle
A030523.
-
I:=[0,1,2]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2): n in [1..45]]; // Vincenzo Librandi, Nov 10 2014
-
A057682:=n->add((-1)^j*binomial(n,3*j+1), j=0..floor(n/3)):
seq(A057682(n), n=0..50); # Wesley Ivan Hurt, Nov 11 2014
-
A[n_] := Array[KroneckerDelta[#1, #2 + 1] - KroneckerDelta[#1, #2] + Sum[KroneckerDelta[#1, #2 -q], {q, n}] &, {n, n}];
Join[{0,1}, Table[(-1)^(n-1)*Total[CoefficientList[ CharacteristicPolynomial[A[(n-1)], x], x]], {n,2,30}]] (* John M. Campbell, Mar 16 2012 *)
Join[{0}, LinearRecurrence[{3,-3}, {1,2}, 40]] (* Jean-François Alcover, Jan 08 2019 *)
-
{a(n) = sum( j=0, n\3, (-1)^j * binomial(n, 3*j + 1))} /* Michael Somos, May 26 2004 */
-
{a(n) = if( n<2, n>0, n-=2; polsym(x^2 - 3*x + 3, n)[n + 1])} /* Michael Somos, May 26 2004 */
-
b=BinaryRecurrenceSequence(3,-3,1,2)
def A057682(n): return 0 if n==0 else b(n-1)
[A057682(n) for n in range(41)] # G. C. Greubel, Jul 14 2023
A000750
Expansion of bracket function.
Original entry on oeis.org
1, -5, 15, -35, 70, -125, 200, -275, 275, 0, -1000, 3625, -9500, 21250, -42500, 76875, -124375, 171875, -171875, 0, 621875, -2250000, 5890625, -13171875, 26343750, -47656250, 77109375, -106562500, 106562500, 0
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..3000
- H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
- Index entries for linear recurrences with constant coefficients, signature (-5, -10, -10, -5).
-
LinearRecurrence[{-5, -10, -10, -5}, {1, -5, 15, -35}, 30] (* Jean-François Alcover, Feb 11 2016 *)
-
Vec(1/((1+x)^5-x^5) + O(x^40)) \\ Michel Marcus, Feb 11 2016
-
{a(n) = (-1)^n*sum(k=0, n\5, (-1)^k*binomial(n+4, 5*k+4))} \\ Seiichi Manyama, Mar 21 2019
A001659
Expansion of bracket function.
Original entry on oeis.org
1, 1, -1, 2, -5, 13, -33, 80, -184, 402, -840, 1699, -3382, 6750, -13716, 28550, -60587, 129579, -275915, 579828, -1197649, 2431775, -4870105, 9672634, -19173013, 38151533, -76521331, 154941608, -316399235, 649807589, -1337598675, 2751021907, -5640238583, 11513062785, -23389948481, 47310801199, -95345789479, 191616365385
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Table[Sum[(-1)^(n - k)*Binomial[n, k]*Sum[Floor[k/j], {j, 1, k}], {k, 0, n}], {n, 1, 50}] (* G. C. Greubel, Jul 02 2017 *)
-
a(n)=sum(j=0,n,(-1)^(n-j)*binomial(n,j)*sum(k=1,j,j\k))
-
a(n)=polcoeff(sum(k=1,n,x^k/((1+x)^k-x^k),x*O(x^n)),n)
A006090
Expansion of bracket function.
Original entry on oeis.org
1, -6, 21, -56, 126, -252, 463, -804, 1365, -2366, 4368, -8736, 18565, -40410, 87381, -184604, 379050, -758100, 1486675, -2884776, 5592405, -10919090, 21572460, -43144920, 87087001, -176565486, 357913941, -723002336
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2, issue 4, (1964), 241-260.
- Problems Drive, Eureka, 37 (1974), 8-11, 32-33, 24-27. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (-6,-15,-20,-15,-6).
-
CoefficientList[Series[1/((1+x)^6-x^6),{x,0,30}],x] (* or *) LinearRecurrence[ {-6,-15,-20,-15,-6},{1,-6,21,-56,126},31] (* Harvey P. Dale, Oct 14 2016 *)
-
x='x+O('x^50); Vec(1/((1+x)^6-x^6)) \\ G. C. Greubel, Jul 02 2017
A307047
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1+x)^k-x^k).
Original entry on oeis.org
1, 1, 0, 1, -2, 0, 1, -3, 4, 0, 1, -4, 6, -8, 0, 1, -5, 10, -9, 16, 0, 1, -6, 15, -20, 9, -32, 0, 1, -7, 21, -35, 36, 0, 64, 0, 1, -8, 28, -56, 70, -64, -27, -128, 0, 1, -9, 36, -84, 126, -125, 120, 81, 256, 0, 1, -10, 45, -120, 210, -252, 200, -240, -162, -512, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, -2, -3, -4, -5, -6, -7, -8, ...
0, 4, 6, 10, 15, 21, 28, 36, ...
0, -8, -9, -20, -35, -56, -84, -120, ...
0, 16, 9, 36, 70, 126, 210, 330, ...
0, -32, 0, -64, -125, -252, -462, -792, ...
0, 64, -27, 120, 200, 463, 924, 1716, ...
0, -128, 81, -240, -275, -804, -1715, -3432, ...
0, 256, -162, 496, 275, 1365, 2989, 6436, ...
-
T[n_, k_] := (-1)^n * Sum[(-1)^(j * Mod[k, 2]) * Binomial[n + k - 1, k*j + k - 1], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
A108369
Coefficients of x/(1+3*x+3*x^2-x^3).
Original entry on oeis.org
0, 1, -3, 6, -8, 3, 21, -80, 180, -279, 217, 366, -2028, 5203, -9159, 9840, 3160, -48159, 144837, -286874, 377952, -128397, -1035539, 3869760, -8631060, 13248361, -9982143, -18429714, 98483932, -250144797, 436552881, -460740320, -177582480, 2351521281
Offset: 0
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 562.
-
CoefficientList[Series[x/(1+3x+3x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{-3,-3,1},{0,1,-3},40] (* Harvey P. Dale, Jul 30 2024 *)
-
{a(n)=if(n>=0, polcoeff(x/(1+3*x+3*x^2-x^3)+x*O(x^n),n), n=-1-n; polcoeff(x/(1-3*x-3*x^2-x^3)+x*O(x^n),n))}
Showing 1-10 of 18 results.
Comments