A130518 a(n) = Sum_{k=0..n} floor(k/3). (Partial sums of A002264.)
0, 0, 0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247, 260, 273, 287, 301, 315, 330, 345, 360, 376, 392, 408, 425, 442, 459, 477, 495, 513, 532, 551, 570
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
Programs
-
GAP
List([0..60], n-> Int(n*(n-1)/6)); # G. C. Greubel, Aug 31 2019
-
Magma
[Round(n*(n-1)/6): n in [0..60]]; // Vincenzo Librandi, Jun 25 2011
-
Maple
seq(floor(n*(n-1)/6),n=0..60); # Robert Israel, Nov 27 2014
-
Mathematica
Table[n, {n, 0, 19}, {3}] // Flatten // Accumulate (* Jean-François Alcover, Jun 05 2013 *)
-
PARI
a(n)=n*(n-1)\/6 \\ Charles R Greathouse IV, Jun 05 2013
-
Sage
[floor(binomial(n,2)/3) for n in range(0,60)] # Zerinvary Lajos, Dec 01 2009
Formula
G.f.: x^3 / ((1-x^3)*(1-x)^2).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
a(n) = round(n*(n-1)/6) = round((n^2-n-1)/6) = floor(n*(n-1)/6) = ceiling((n+1)*(n-2)/6). - Mircea Merca, Nov 28 2010
a(n) = a(n-3) + n - 2, n > 2. - Mircea Merca, Nov 28 2010
a(n) = A214734(n, 1, 3). - Renzo Benedetti, Aug 27 2012
a(3n) = A000326(n), a(3n+1) = A005449(n), a(3n+2) = 3*A000217(n) = A045943(n). - Philippe Deléham, Mar 26 2013
a(n) = (3*n*(n-1) - (-1)^n*((1+i*sqrt(3))^(n-2) + (1-i*sqrt(3))^(n-2))/2^(n-3) - 2)/18, where i=sqrt(-1). - Bruno Berselli, Nov 30 2014
Sum_{n>=3} 1/a(n) = 20/3 - 2*Pi/sqrt(3). - Amiram Eldar, Sep 17 2022
Comments