A007612 a(n+1) = a(n) + digital root (A010888) of a(n).
1, 2, 4, 8, 16, 23, 28, 29, 31, 35, 43, 50, 55, 56, 58, 62, 70, 77, 82, 83, 85, 89, 97, 104, 109, 110, 112, 116, 124, 131, 136, 137, 139, 143, 151, 158, 163, 164, 166, 170, 178, 185, 190, 191, 193, 197, 205, 212, 217, 218, 220, 224, 232, 239, 244, 245, 247, 251
Offset: 1
References
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 65.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Digital Root.
Programs
-
Haskell
a007612 n = a007612_list !! (n-1) a007612_list = iterate a064806 1 -- Reinhard Zumkeller, Apr 13 2013
-
Maple
A007612 := proc(n) option remember: if(n=1)then return 1: fi: return procname(n-1) + ((procname(n-1)-1) mod 9) + 1: end: seq(A007612(n), n=1..100); # Nathaniel Johnston, May 04 2011
-
Mathematica
dr[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&]; NestList[#+dr[#]&, 1,60] (* Harvey P. Dale, Sep 24 2011 *) NestList[#+Mod[#,9]&,1,60] (* Harvey P. Dale, Sep 14 2016 *)
-
PARI
first(n)=my(v=vector(n)); v[1]=1; for(k=2,n, v[k]=v[k-1]+v[k-1]%9); v \\ Charles R Greathouse IV, Jun 25 2017
-
PARI
a(n)=n\6*27 + [-4,1,2,4,8,16][n%6+1] \\ Charles R Greathouse IV, Jun 25 2017
Formula
a(1) = 1, a(n+1) = a(n) + a(n) mod 9. - Reinhard Zumkeller, Mar 23 2003
First differences are [1,2,4,8,7,5] repeated. - M. F. Hasler, Sep 15 2009; corrected by John Keith, Aug 17 2022
n == 1, 2, 4, 8, 16, or 23 (mod 27). - Dean Hickerson, Mar 25 2003
Limit_{n->oo} a(n)/n = 9/2; A029898(n) = a(n+1) - a(n) = A010888(a(n)). - Reinhard Zumkeller, Feb 27 2006
a(6n+1)=27n+1, a(6n+2)=27n+2, a(6n+3)=27n+4, a(6n+4)=27n+8, a(6n+5)=27n+16, a(6n+6)=27n+23. - Franklin T. Adams-Watters, Mar 13 2006
G.f.: (1+4*x^4+3*x^3+x^2)/((x+1)*(x^2-x+1)*(x-1)^2). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n+1) = A064806(a(n)). - Reinhard Zumkeller, Apr 13 2013
Comments