cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 290 results. Next

A007612 a(n+1) = a(n) + digital root (A010888) of a(n).

Original entry on oeis.org

1, 2, 4, 8, 16, 23, 28, 29, 31, 35, 43, 50, 55, 56, 58, 62, 70, 77, 82, 83, 85, 89, 97, 104, 109, 110, 112, 116, 124, 131, 136, 137, 139, 143, 151, 158, 163, 164, 166, 170, 178, 185, 190, 191, 193, 197, 205, 212, 217, 218, 220, 224, 232, 239, 244, 245, 247, 251
Offset: 1

Views

Author

Keywords

Comments

Take m, a natural number. If m == 1 (mod 6), then for every n a(m)*a(n) is in A007612. - Ivan N. Ianakiev, May 08 2013

References

  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 65.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007612 n = a007612_list !! (n-1)
    a007612_list = iterate a064806 1  -- Reinhard Zumkeller, Apr 13 2013
    
  • Maple
    A007612 := proc(n) option remember: if(n=1)then return 1: fi: return procname(n-1) + ((procname(n-1)-1) mod 9) + 1: end: seq(A007612(n), n=1..100); # Nathaniel Johnston, May 04 2011
  • Mathematica
    dr[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&]; NestList[#+dr[#]&, 1,60] (* Harvey P. Dale, Sep 24 2011 *)
    NestList[#+Mod[#,9]&,1,60] (* Harvey P. Dale, Sep 14 2016 *)
  • PARI
    first(n)=my(v=vector(n)); v[1]=1; for(k=2,n, v[k]=v[k-1]+v[k-1]%9); v \\ Charles R Greathouse IV, Jun 25 2017
    
  • PARI
    a(n)=n\6*27 + [-4,1,2,4,8,16][n%6+1] \\ Charles R Greathouse IV, Jun 25 2017

Formula

a(1) = 1, a(n+1) = a(n) + a(n) mod 9. - Reinhard Zumkeller, Mar 23 2003
First differences are [1,2,4,8,7,5] repeated. - M. F. Hasler, Sep 15 2009; corrected by John Keith, Aug 17 2022
n == 1, 2, 4, 8, 16, or 23 (mod 27). - Dean Hickerson, Mar 25 2003
Limit_{n->oo} a(n)/n = 9/2; A029898(n) = a(n+1) - a(n) = A010888(a(n)). - Reinhard Zumkeller, Feb 27 2006
a(6n+1)=27n+1, a(6n+2)=27n+2, a(6n+3)=27n+4, a(6n+4)=27n+8, a(6n+5)=27n+16, a(6n+6)=27n+23. - Franklin T. Adams-Watters, Mar 13 2006
G.f.: (1+4*x^4+3*x^3+x^2)/((x+1)*(x^2-x+1)*(x-1)^2). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n+1) = A064806(a(n)). - Reinhard Zumkeller, Apr 13 2013

A064807 Numbers which are divisible by their digital root (A010888).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 19, 20, 21, 24, 27, 28, 30, 36, 37, 38, 39, 40, 42, 45, 46, 48, 50, 54, 55, 56, 57, 60, 63, 64, 66, 70, 72, 73, 74, 75, 76, 78, 80, 81, 82, 84, 90, 91, 92, 93, 95, 96, 99, 100, 102, 108, 109, 110, 111, 112, 114, 117, 118
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 21 2001

Keywords

Comments

All numbers 9m, m > 0, belong to this sequence.
All numbers 6m, m > 0, belong to this sequence. - Christian Schulz, Oct 30 2013
All numbers 280m, m > 0, belong to this sequence. Only 6, 9, 280, and their multiples have this property. - Charles R Greathouse IV, Dec 26 2013
Conjecture: All k-multiply perfect numbers belong to this sequence. - Ivan N. Ianakiev, May 10 2016
The asymptotic density of this sequence is 1321/2520 = 0.524206... (see A074947 and A074949 for the values in other base representations). - Amiram Eldar, Nov 24 2022
The even perfect numbers are a subsequence. It is an open question whether the odd perfect numbers are a subsequence; this would involve ruling out 148 residue classes mod 2520 as OPNs. - Charles R Greathouse IV, Jan 03 2023

Examples

			48: 4 + 8 = 12 -> 1 + 2 = 3. 48 = 3 * 16 therefore 48 = a(28).
		

Crossrefs

Programs

  • Haskell
    a064807 n = a064807_list !! (n-1)
    a064807_list = filter (\x -> x `mod` a010888 x == 0) [1..]
    -- Reinhard Zumkeller, Jan 03 2014
  • Maple
    A064807 := proc(n) option remember: local k: if(n=1)then return 1:fi: for k from procname(n-1)+1 do if(k mod (((k-1) mod 9) + 1) = 0)then return k: fi: od: end: seq(A064807(n),n=1..100); # Nathaniel Johnston, May 05 2011
  • Mathematica
    Select[Range[125], Divisible[#, Mod[# - 1, 9] + 1] &] (* Alonso del Arte, Nov 01 2013 *)
  • PARI
    is(n)=n%((n-1)%9+1)==0 \\ Charles R Greathouse IV, Dec 26 2013
    

Formula

a(n) = a(n-1321) + 2520. - Charles R Greathouse IV, Dec 26 2013
2520n/1321 - 10 < a(n) <= 2520n/1321. (In fact, if you exclude n = 10 mod 1321, you can replace 10 with 9.) - Charles R Greathouse IV, Jan 03 2023
a(n) = a(n-1) + a(n-1321) - a(n-1322). - Charles R Greathouse IV, Apr 20 2023

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Sep 26 2009

A147706 Number of partitions of n into parts having distinct digital roots (A010888).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 11, 15, 16, 20, 25, 28, 32, 39, 46, 50, 62, 66, 78, 93, 101, 112, 132, 150, 161, 192, 202, 232, 268, 287, 312, 361, 400, 425, 497, 516, 582, 658, 698, 748, 858, 932, 982, 1135, 1164, 1296, 1443, 1519, 1610, 1845, 1968, 2059, 2360, 2395
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 11 2008

Keywords

Comments

a(n) <= A000009(n).
Likely a duplicate of A114098. [From R. J. Mathar, Dec 13 2008]

Examples

			A000009(16) = 32, in which the following 4 partitions
contain parts with common digital roots:
12 + 3 + 1, 11 + 3 + 2, 10 + 5 + 1 and 10 + 3 + 2 + 1,
therefore a(16) = 32 - 4 = 28.
		

Crossrefs

A139413 Triangle read by rows: row n gives the numbers A010888(n*k) for k = 1..n.

Original entry on oeis.org

1, 2, 4, 3, 6, 9, 4, 8, 3, 7, 5, 1, 6, 2, 7, 6, 3, 9, 6, 3, 9, 7, 5, 3, 1, 8, 6, 4, 8, 7, 6, 5, 4, 3, 2, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 4
Offset: 1

Views

Author

Philippe Lallouet (philip.lallouet(AT)orange.fr), Apr 19 2008

Keywords

Examples

			Triangle begins:
1
2 4
3 6 9
4 8 3 7
5 1 6 2 7
6 3 9 6 3 9
7 5 3 1 8 6 4
8 7 6 5 4 3 2 1
9 9 9 9 9 9 9 9 9
...
		

Crossrefs

Cf. A007953 (column 1), A180592 - A180599 (columns 2 - 9), A010888, A038194.

Programs

  • Maple
    A010888:=proc(n) return ((n-1) mod 9)+1; end:
    for n from 1 to 9 do for k from 1 to n do printf("%d ",A010888(n*k)); od: printf("\n"): od: # Nathaniel Johnston, Apr 21 2011
  • Mathematica
    Table[FixedPoint[Total@ IntegerDigits[#] &, n k], {n, 13}, {k, n}] // Flatten (* Michael De Vlieger, Oct 31 2021 *)

Extensions

More terms and several terms corrected by Nathaniel Johnston, Apr 21 2011

A130856 The digital root (A010888) of the Catalan numbers A000108.

Original entry on oeis.org

1, 1, 2, 5, 5, 6, 6, 6, 8, 2, 2, 7, 4, 4, 9, 9, 9, 6, 6, 6, 3, 3, 3, 9, 9, 9, 8, 2, 2, 4, 1, 1, 3, 3, 3, 1, 7, 7, 2, 5, 5, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 6, 6, 6, 3, 3, 3, 9, 9, 9, 3, 3, 3, 6, 6, 6, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 2, 2, 4, 1, 1, 3
Offset: 0

Views

Author

N. J. A. Sloane, Aug 21 2007

Keywords

Crossrefs

Programs

  • Maple
    A130856 := proc(n) option remember: if(n=0)then return 1:fi: return ((add(procname(k)*procname(n-1-k),k=0..n-1)-1) mod 9) + 1 end: seq(A130856(n),n=0..100); # Nathaniel Johnston, May 05 2011
  • Mathematica
    droot[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&]; droot/@CatalanNumber[ Range[ 0,100]] (* Harvey P. Dale, Apr 09 2022 *)
  • PARI
    a(n) = (binomial(2*n,n)/(n+1)-1)%9 + 1; \\ Michel Marcus, Nov 28 2022

Extensions

Name corrected by Nathaniel Johnston, May 05 2011

A381491 a(n) = A010888(A381487(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 2, 4, 8, 9, 7, 9, 2, 4, 8, 9, 5, 2, 9, 7, 4, 8, 9, 2, 9, 4, 8, 7, 9, 5, 2, 9, 4, 8, 9, 7, 2, 4, 9, 8, 9, 2, 4, 5, 9, 7, 8, 9, 2, 4, 9, 8, 7, 9, 2, 4, 8, 9, 5, 9, 2, 7, 4, 8, 9, 9, 2, 4, 8, 9, 7, 5, 9, 2, 4, 8, 9, 7, 2, 9, 4, 8, 9
Offset: 1

Views

Author

Stefano Spezia, Feb 25 2025

Keywords

Examples

			a(12) = 2 because the digital root of A381487(12) = 128 is 2.
		

Crossrefs

Programs

  • Mathematica
    A010888[n_]:=n - 9*Floor[(n-1)/9]; kmax=5*10^6; a={0,1}; For[k=2, k<=kmax, k++, If[A010888[k]!=1, If[IntegerQ[Log[A010888[k],k]], AppendTo[a,A010888[k]]]]]; a
  • PARI
    dr(n) = if(n, (n-1)%9+1); \\ A010888
    lista(nn) = my(list = List()); listput(list, 0); listput(list, 1); for (n=2, 9, for (k=1, logint(nn, n), if (dr(n^k) == n, listput(list, n^k)););); apply(x->dr(x), vecsort(Vec(list))); \\ Michel Marcus, Feb 27 2025

Extensions

More terms from Michel Marcus, Feb 27 2025

A082944 a(n) = concatenate(n, A010888(2*n), reverse(n)), where A010888 = digital root.

Original entry on oeis.org

121, 242, 363, 484, 515, 636, 757, 878, 999, 10201, 11411, 12621, 13831, 14141, 15351, 16561, 17771, 18981, 19291, 20402, 21612, 22822, 23132, 24342, 25552, 26762, 27972, 28282, 29492, 30603
Offset: 1

Views

Author

Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 06 2003

Keywords

Comments

The central digit A010888(2*n) cyclically repeats the nine digits (2, 4, 6, 8, 1, 3, 5, 7, 9) in this order.
The sum of the digits of n plus the digits of the reverse of n is always simply 2 times the sum of the digits of n. - Harvey P. Dale, Aug 12 2019

Examples

			For a(17): 1+7+7+1 = 16. 1+6 = 7. Thus the center digit is 7 and a(17) = 17771.
For a(23): 2+3+3+2 = 10. 1+0 = 1. Thus the center digit is 1 and a(23) = 23132.
		

References

  • Amarnath Murthy

Crossrefs

Cf. A010888 (digital root), A004086 (read n backwards: trailing zeros are lost - but not in this sequence here).

Programs

  • Mathematica
    nxt[n_]:=Module[{idn=IntegerDigits[n],b,c},b=NestWhile[Total[IntegerDigits[ # ]]&, 2 Total[idn],#>9&];c=Reverse[idn];FromDigits[Join[idn,{b},c]]]; Table[ nxt[n],{n,20}] (* Harvey P. Dale, Aug 12 2019 *)
  • PARI
    A082944(n)=fromdigits(concat([digits(n), (2*n-1)%9+1, Vecrev(digits(n))])) \\ Cf. A010888. - R. J. Cano, Jan 05 2022

Extensions

Definition, comment and example corrected by M. F. Hasler, Jan 05 2022

A110365 a(1)=2, a(n+1) = a(n)*A010888(a(n)).

Original entry on oeis.org

2, 4, 16, 112, 448, 3136, 12544, 87808, 351232, 2458624, 9834496, 68841472, 275365888, 1927561216, 7710244864, 53971714048, 215886856192, 1511207993344, 6044831973376, 42313823813632, 169255295254528, 1184787066781696, 4739148267126784, 33174037869887488
Offset: 1

Views

Author

Amarnath Murthy, Jul 24 2005

Keywords

Comments

From a(2) onwards, the digital root follows the pattern alternately 4,7,4,7,4,7,...

Crossrefs

Programs

  • Mathematica
    k = 2; Do[Print[k]; k *= Mod[Plus @@ IntegerDigits[k], 9], {n, 1, 30}] (* Ryan Propper, Oct 13 2005 *)
    LinearRecurrence[{0,28},{2,4,16},30] (* Harvey P. Dale, Mar 17 2019 *)
  • PARI
    Vec(2*x*(1+2*x-20*x^2)/(1-28*x^2) + O(x^50)) \\ Colin Barker, May 05 2016

Formula

a(1) = 2, a(2) = 4, a(3) = 16. a(2*n) = 4*a(2*n-1), a(2*n+1) = 7*a(2*n) for n > 1.
From Colin Barker, May 05 2016: (Start)
a(n) = 2^(-1+n)*(7^(1/2*(-3+n))*(2-2*(-1)^n + sqrt(7) + (-1)^n*sqrt(7))) for n > 1.
a(n) = 2^n*7^(n/2-1) for n > 1 and even.
a(n) = 2^(n+1)*7^((n-3)/2) for n > 1 and odd.
a(n) = 28*a(n-2) for n > 3.
G.f.: 2*x*(1+2*x-20*x^2) / (1-28*x^2).
(End)
E.g.f.: (-7 + 70*x + 7*cosh(2*Sqrt(7)*x) + 2*sqrt(7)*sinh(2*sqrt(7)*x))/49. - Ilya Gutkovskiy, May 05 2016

Extensions

More terms from Ryan Propper, Oct 13 2005
Name clarified by Robert Israel, May 05 2016

A361203 a(n) = n*A010888(n).

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 10, 22, 36, 52, 70, 90, 112, 136, 162, 19, 40, 63, 88, 115, 144, 175, 208, 243, 28, 58, 90, 124, 160, 198, 238, 280, 324, 37, 76, 117, 160, 205, 252, 301, 352, 405, 46, 94, 144, 196, 250, 306, 364, 424, 486, 55, 112, 171, 232
Offset: 0

Views

Author

Stefano Spezia, Apr 20 2023

Keywords

Comments

Every run of increasing terms ends with a positive multiple of 81, and except for the first run, it starts with a term of A017173 which is a fixed point for this sequence (see 4th formula).

Crossrefs

Programs

  • Mathematica
    a[n_]:=n(n - 9*Floor[(n-1)/9]); Join[{0},Array[a,58]]
  • Python
    def A361203(n): return n*(1 + (n - 1) % 9) # Chai Wah Wu, Apr 23 2023

Formula

G.f.: x*(1 + 4*x + 9*x^2 + 16*x^3 + 25*x^4 + 36*x^5 + 49*x^6 + 64*x^7 + 81*x^8 + 8*x^9 + 14*x^10 + 18*x^11 + 20*x^12 + 20*x^13 + 18*x^14 + 14*x^15 + 8*x^16)/((1 - x)^2*(1 + x + x^2)^2*(1 + x^3 + x^6)^2).
a(n) = 2*a(n-9) - a(n-18) for n > 17.
a(n) = n*(n - 9*floor((n-1)/9)) for n > 0.
a(A017173(n)) = A017173(n).

A073637 Digital root (cf. A010888) of prime(n)^3.

Original entry on oeis.org

8, 9, 8, 1, 8, 1, 8, 1, 8, 8, 1, 1, 8, 1, 8, 8, 8, 1, 1, 8, 1, 1, 8, 8, 1, 8, 1, 8, 1, 8, 1, 8, 8, 1, 8, 1, 1, 1, 8, 8, 8, 1, 8, 1, 8, 1, 1, 1, 8, 1, 8, 8, 1, 8, 8, 8, 8, 1, 1, 8, 1, 8, 1, 8, 1, 8, 1, 1, 8, 1, 8, 8, 1, 1, 1, 8, 8, 1, 8, 1, 8, 1, 8, 1, 1, 8, 8, 1, 8, 1, 8, 8, 1, 8, 1, 8, 8, 8, 1, 1
Offset: 1

Views

Author

Zak Seidov, Sep 01 2002, Oct 23 2009

Keywords

Comments

Apart from a(2)=9 all other terms are either 1 or 8.

Examples

			a(3)=8 because p(3)=5 and 5^3=125 -> sum-of-digits = 8. a(4)=1 because p(3)=7 and 7^3=343 -> sum-of-digits = 10 -> sum-of-digits = 1.
		

Crossrefs

Programs

  • Mathematica
    n=3; su[x_] := Sum[IntegerDigits[x][[i]], {i, Length[IntegerDigits[x]]}]; Table[su[su[su[su[Prime[x]^n]]]], {x, 100}]
    Table[If[(m9=Mod[Prime[n]^3,9])==0,9,m9],{n,200}]

Extensions

Edited by N. J. A. Sloane, Oct 29 2009
Showing 1-10 of 290 results. Next